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1. Motivation:

Unstructured Sparse NN Training
results in poor generalization

Two exceptions:

(a) Lottery Tickets (LTs) and,

(b) Dynamic Sparse Training (DST).
Q: What makes DST and LTs the
exceptions?

We observe poor gradient flow at
initialization and during training -
even for LTs!

2. Poor Gradient Flow at Init.:
We propose a Sparsity-aware Initialization

Sparse NN training use dense
initialization, but sparse NN have
different fan-in/fan-out!

Our sparsity-aware initialization
accounts for fan-in/fan-out of
unstructured sparse neurons giving:
(a) better gradient flow at init. and,

(b) better generalization
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We investigate

LT solns to pruned solns: g

(a) LTs start close and move
towards to the pruning solution.
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(b) LT solutions are in the same
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4. Lottery Tickets Relearn the Pruning Solution:
LTs are easier to train because they initialized within the same solution basin
as the pruned solution, and effectively relearn the pruning solution

basin as the pruning solutions. [

(c) high function similarity and
poor LT ensemble performance
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