Sparse Training:

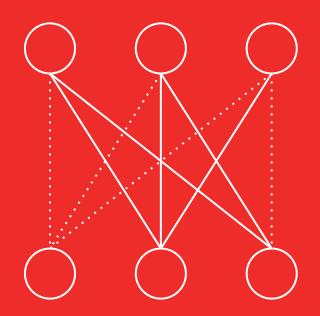
Aligning Sparse Masks with Weight Symmetry

Yani Ioannou

Assistant Professor, Schulich Research Chair Dept. of Electrical & Software Engineering, Schulich School of Engineering, University of Calgary

Amii Al Seminar Series

November 21st, 2025

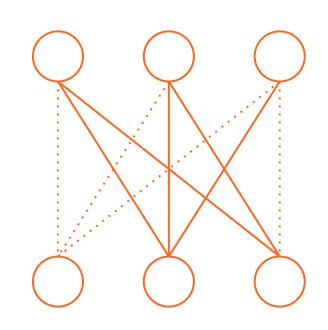


Sparse Training:

Aligning Sparse Masks with Weight Symmetry

1. Short Biography

- 2. Motivation
- 3. Background
- 4. Aligning Sparse Masks



Biography: Yani Ioannou PhD, University of Cambridge, 2018

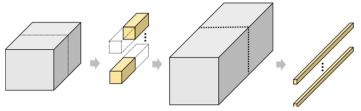
- Prof. Roberto Cipolla (Department of Engineering)
 Dr. Antonio Criminisi (Microsoft Research)
- Microsoft Research PhD Scholarship

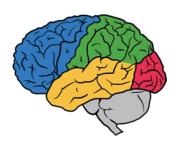
Training CNNs with Low-Rank Filters for Efficient Image Classification.

Yani Ioannou, Duncan Robertson, Jamie Shotton, Roberto Cipolla, Antonio Criminisi. ICLR 2016

Deep Roots: Improving CNN Efficiency with Hierarchical Filter Groups

Yani Ioannou, Duncan Robertson, Roberto Cipolla, Antonio Criminisi. CVPR 2017





2019 - 2020

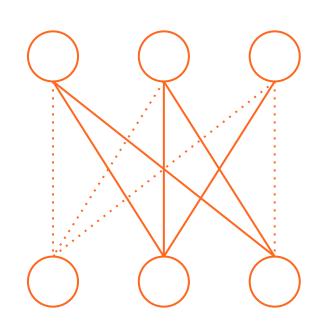
Google Brain (Toronto) Visiting Researcher

Gradient Flow in Sparse Neural Networks and How Lottery Tickets Win

Utku Evci, Yani Ioannou, Cem Keskin, Yann Dauphin AAAI 2022 Oral Presentation

Sparse Training: Aligning Sparse Masks with Weight Symmetry

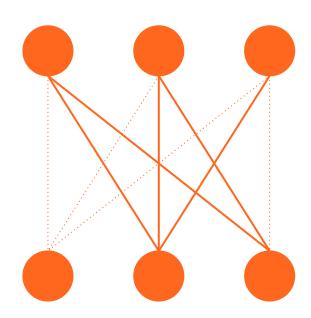
- 1. Short Biography
- 2. Motivation
- 3. Background
- 4. Aligning Sparse Masks



Why Sparse Neural Networks?

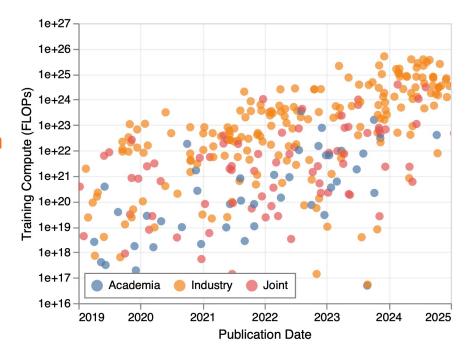
 We will focus on weight sparsity, but there are other forms of sparsity (e.g. activation)

- Reducing the cost of NN training and inference
- Learning NN structure from data
- Understanding & improving NN training



Motivation: Efficiency

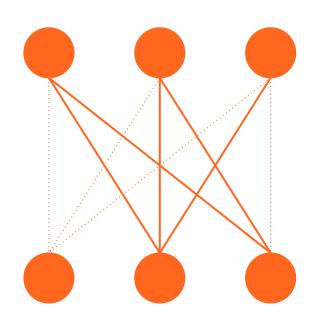
- State of the art models are becoming exponentially more expensive to train
- Al Research is less accessible
- Inference cost is increasingly important, sparse training shows promise in learning better masks for inference than pruning



Training Cost (FLOPS) for State-of-the-Art ML Models (data Epoch AI)

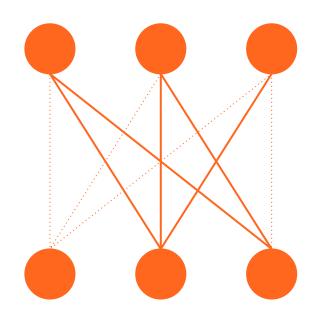
Motivation: Learning NN Structure

- In practice we rarely use fully-connected NNs for learning representations (features)...
- Instead, we must use our domain knowledge to change the structure of the model
 - CNNs, Transformers, Graph NNs, ...
- These are technically sparse neural networks also, but are hand-designed, not learned
- Can we learn NN structure & inductive biases from data?



Motivation: Understanding Learning

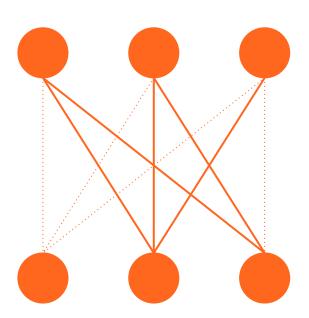
- Training NNs from random initialization is unreasonably effective... but not always
- Much of the "deep learning" progress can be attributed to improved NN training:
 - Initialization, normalization, residual connections, etc.
- Sparsity breaks NN training
- Understanding sparse training could improve our fundamental understanding of training



Calgary ML Lab Research

What we have been doing:

- Using SOTA sparse training methods to accelerate practical real-world problems, e.g.:
 - Dynamic Sparse Training with Structured Sparsity. Mike Lasby, Anna Golubeva, Utku Evci, Mihai Nica, and Yani Ioannou. In International Conference on Learning Representations (ICLR), Vienna, Austria 2024.
 - Navigating Extremes: Dynamic Sparsity in Large Output Spaces. Nasib Ullah, Erik Schultheis, Mike Lasby, Yani Ioannou, and Rohit Babbar. In 38th Annual Conference Neural Information Processing Systems (NeurIPS) 2024, Vancouver, BC, Canada 2024.



DYNAMIC SPARSE TRAINING WITH STRUCTURED SPARSITY

Mike Lasby¹, Anna Golubeva^{2,3}, Utku Evci⁴, Mihai Nica^{5,6}, Yani A. Ioannou¹
¹University of Calgary, ²Massachusetts Institute of Technology, ³IAIFI
⁴Google DeepMind, ⁵University of Guelph, ⁶Vector Institute for AI *

ABSTRACT

Dynamic Sparse Training (DST) methods achieve state-of-the-art results in sparse neural network training, matching the generalization of dense models while enabling sparse training and inference. Although the resulting models are highly sparse and theoretically less computationally expensive, achieving speedups with unstructured sparsity on real-world hardware is challenging. In this work, we propose a sparse-to-sparse DST method, Structured RigL (SRigL), to learn a variant of fine-grained structured N:M sparsity by imposing a constant fan-in constraint. Using our empirical analysis of existing DST methods at high sparsity, we additionally employ a neuron ablation method which enables SRigL to achieve state-of-the-art sparse-to-sparse structured DST performance on a variety of Neural Network (NN) architectures. Using a 90% sparse linear layer, we demonstrate a real-world acceleration of 3.4×/2.5× on CPU for online inference and 1.7×/13.0× on GPU for inference with a batch size of 256 when compared to equivalent dense/unstructured (CSR) sparse layers, respectively.

1 Introduction

Dynamic Sparse Training (DST) methods such as RigL (Evci et al., 2021) are the state-of-the-art in sparse training methods for Deep Neural Networks (DNNs). DST methods typically learn *unstructured* masks resulting in 85–95% fewer weights than dense models, while maintaining dense-like generalization and typically outperforming masks found via pruning. Furthermore, sparse-to-sparse DST algorithms are capable of employing sparsity both during training and inference, unlike pruning and dense-to-sparse DST methods such as SR-STE (Zhou et al., 2021) which only exploit sparsity at inference time.

While models trained with DST methods are highly sparse and enable a large reduction in Floating Point Operations (FLOPs) in theory, realizing these speedups on hardware is challenging when the sparsity pattern is unstructured. Even considering recent advances in accelerating unstructured Sparse Neural Networks (SNNs) (Gale et al., 2020; Elsen et al., 2020; Ji & Chen, 2022), structured sparsity realizes much stronger acceleration on real-world hardware. On the other hand, structured sparse pruning often removes salient weights, resulting in worse generalization than comparable unstructured SNNs for the same sparsity level (Fig. 1a). Our work presents a best-of-both-worlds approach: we exploit the DST framework to learn both a highly-sparse and structured representation while maintaining generalization performance. In summary, our work makes the following contributions:

Michael Lasby
PhD Student

Anna Golubeva
Postdoctoral Fellow, MIT/IAIFI

Utku Evci Research Scientist Google DeepMind

Mihai Nica Associate Professor U. Guelph/Vector

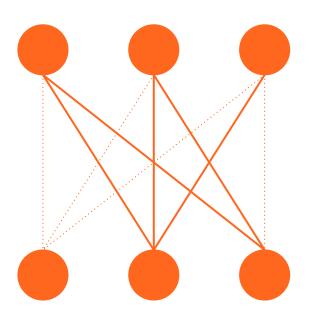
 International Conference for Learning Representations (ICLR) 2024

Calgary ML Lab Research

What we have been doing:

- Understanding why sparse training is difficult
 - Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry.

 Mohammed Adnan, Rohan Jain, Ekansh Sharma, Rahul Krishnan, and Yani Ioannou. In Proceedings of Fortysecond International Conference on Machine Learning (ICML) 2025, Vancouver, BC, Canada.
 - Gradient Flow in Sparse Neural Networks and How Lottery Tickets Win. Utku Evci, Yani A. Ioannou, Cem Keskin, and Yann Dauphin. In Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI) 2022.



Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry

Mohammed Adnan *12 Rohan Jain *1 Ekansh Sharma 32 Rahul G. Krishnan 32 Yani Joannou 1

Abstract

The Lottery Ticket Hypothesis (LTH) suggests there exists a sparse LTH mask and weights that achieve the same generalization performance as the dense model while using significantly fewer parameters. However, finding a LTH solution is computationally expensive, and a LTH's sparsity mask does not generalize to other random weight initializations. Recent work has suggested that neural networks trained from random initialization find solutions within the same basin modulo permutation, and proposes a method to align trained models within the same loss basin. We hypothesize that misalignment of basins is the reason why LTH masks do not generalize to new random initializations and propose permuting the LTH mask to align with the new optimization basin when performing sparse training from a different random init. We empirically show a significant increase in generalization when sparse training from random initialization with the permuted mask as compared to using the non-permuted LTH mask, on multiple datasets (CIFAR-10/100 & ImageNet) and models (VGG11 & ResNet20/50). Our codebase for reproducing the results is publicly available at here.

1. Introduction

In recent years, foundation models have achieved state-ofthe-art results for different tasks. However, the exponential increase in the size of state-of-the-art models requires a similarly exponential increase in the memory and computational costs required to train, store and use these models decreasing the accessibility of these models for researchers and practitioners alike. To overcome this issue, different model compression methods, such as pruning, quantization and knowledge distillation, have been proposed to reduce the model size at different phases of training or inference. Post-training model pruning (Han et al., 2016) has been shown to be effective in compressing the model size, and seminal works have demonstrated that large models can be pruned after training with minimal loss in accuracy (Gale et al., 2019; Han et al., 2015). While model pruning makes inference more efficient, it does not reduce the computational cost of training the model.

Motivated by the goal of training a sparse model from a random initialization, Frankle & Carbin (2019) demonstrated that training with a highly sparse mask is possible and proposed the Lottery Ticket Hypothesis (LTH) to identify sparse subnetworks that, when trained, can match the performance of a dense model. The key caveat is that a dense model must first be trained to find the sparse mask, which can only be used with the same random initialization that was used to train the dense model. Despite LTH seeing significant interest in the research community, LTH masks cannot be used to train from a new random initialization. Furthermore, it has been observed empirically that the LTH is impractical for finding a diverse set of solutions (Evci et al., 2022).

This posits our main research questions: How can we train a LTH mask from a different random initialization while main-aining good generalization? Would doing so find a more diverse set of solutions than observed with the LTH itself?

In this work, we try to understand why the LTH does not work for different random initializations from a weight-space symmetry perspective. Our hypothesis is that to reuse the LTH winning ticket mask with a different random initialization, the winning ticket mask obtained needs to

be permuted such that it aligns we associated with the new random is our hypothesis in Figure 1.

To empirically validate our hypo mask using Iterative Magnitude Pt 2020; Han et al., 2015) on model A that given a permutation that alig of model A and a new random in be reused. The sparse model (wit be trained to closer match the ge

Mohammed Adnan
PhD Student

Dr. Ekansh SharmaPhD Graduate
University of Toronto

Rohan Jain MSc Graduate

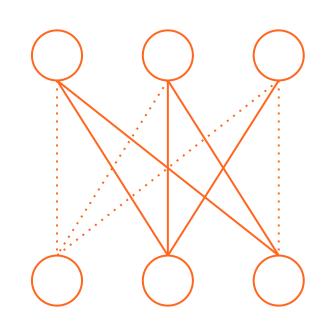
Dr. Rahul KrishnanAssistant Professor
U. Toronto/Vector Institute

 Presented at International Conference on Machine Learning (ICML) 2025

^{*}Equal contribution ¹ Schulich School of Engineering, University of Calgary ²Vector Institute for AI ³Dept. of Computer Science, University of Toronto. Correspondence to: Mohammed Adnan adnan.ahmad@ucalgary.ca>, Yani Ioannou </rd>

Sparse Training: Aligning Sparse Masks with Weight Symmetry

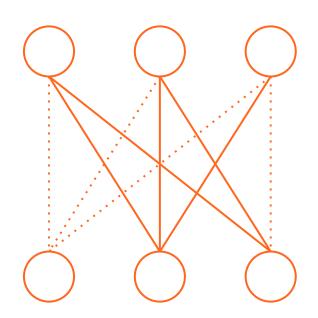
- 1. Short Biography
- 2. Motivation
- 3. Background
- 4. Aligning Sparse Masks



3. Background

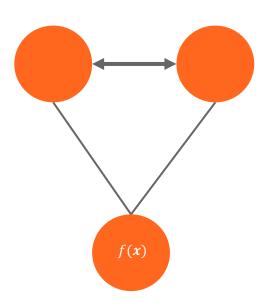
i. Weight Symmetry

ii. Sparse Training Problemiii. Lottery Ticket Hypothesis



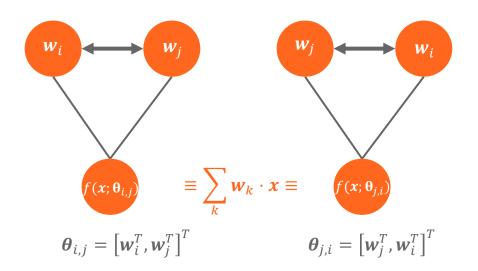
Weight Symmetry: Foundations

- NN layers are permutation invariant: the ordering of neurons is arbitrary
- Different permutations result in the same function, but different parameterizations
 - o i.e. model is a different point in weight space
- NN are an example of what is generally known as a symmetric function



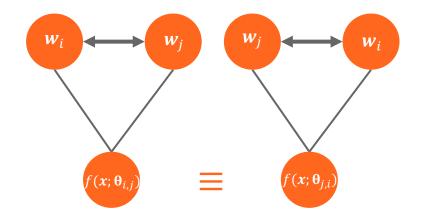
Weight Symmetry: Foundations

- Different permutations result in same function, but different weight parameterizations
- For a NN with L layers, and layer width w, the **number of permutations** is: $(w!)^L$
- NN permutations often number more than atoms in universe (10^{80})



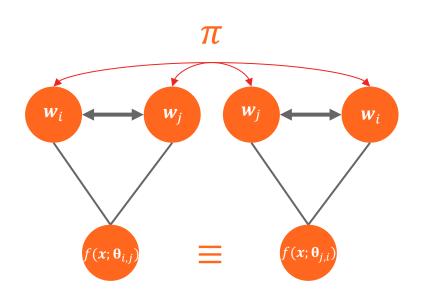
Weight Symmetry: Implications

- No unique minima (or solutions) in weight space
- Why 1st-order optimization can find good solutions with random init²
- May exist only one "basin" modulo permutations^{1,2}, e.g. why random init. find similar solutions...



Permutation Alignment/Mapping

- Finding exact π for deep NN is NP Hard
- Greedy approximation w/ weight matching¹
 - Linear Assignment Problem (LAP) per layer
 - Maximizes correlation of weights/activations
 - Best results empirically for very wide NNs
- Activation matching more robust in general²

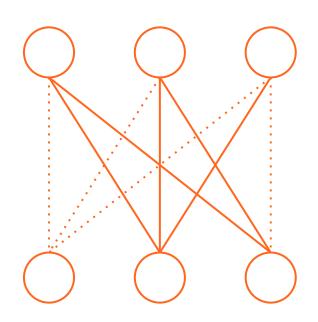


¹Samuel K. Ainsworth, Jonathan Hayase, Siddhartha Srinivasa. Git Re-Basin: Merging Models modulo Permutation Symmetries. ICLR 2023.

²Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur. Repair: Renormalizing permuted activations for interpolation repair. ICLR 2023.

3. Background

i. Weight Symmetryii. Sparse Training Problemiii. Lottery Ticket Hypothesis



Standard NN Training

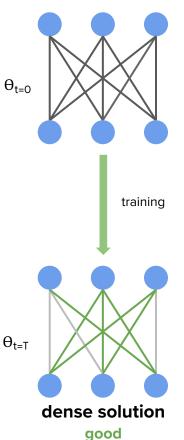
- Train a dense NN from a random initialization to find a dense solution
- This solution generalizes
 well in fact similarly even
 for different random init.!
- Recall: weight symmetry can explain this

—— High saliency weight

Low saliency weight

····· Masked weight

dense initialization

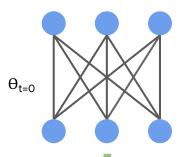


Random initialization $\sim N(0, \sigma)$

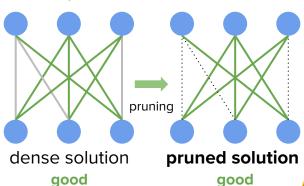
Unstructured Pruning

- Prune low saliency weights
 - Most commonly remove smallest magnitude weights
- "One-shot" pruning
 - Train and then prune once
- Iterative pruning
 - O Train a bit, prune a bit, repeat several times $\theta_{t=T}$
- —— High saliency weight
- ——— Low saliency weight
- ····· Masked weight

dense initialization



Random initialization $\sim N(0, \sigma)$



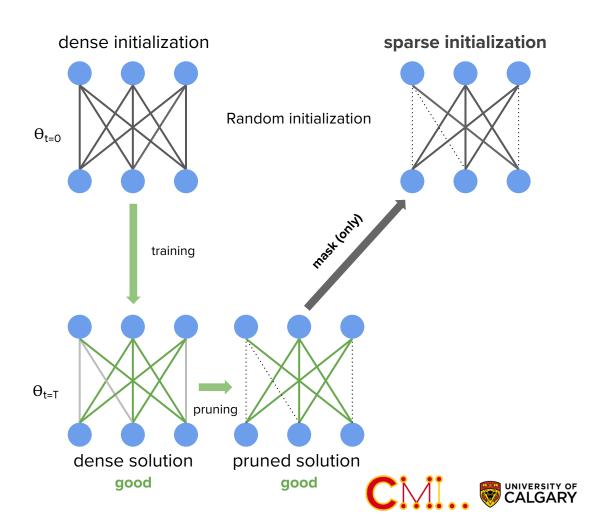
Sparse Training?

- We know we don't need
 ~85-95% of weights at inference...
- Lots of methods to prune after training... but can we train pruned NNs from random initialization?

—— High saliency weight

—— Low saliency weight

····· Masked weight



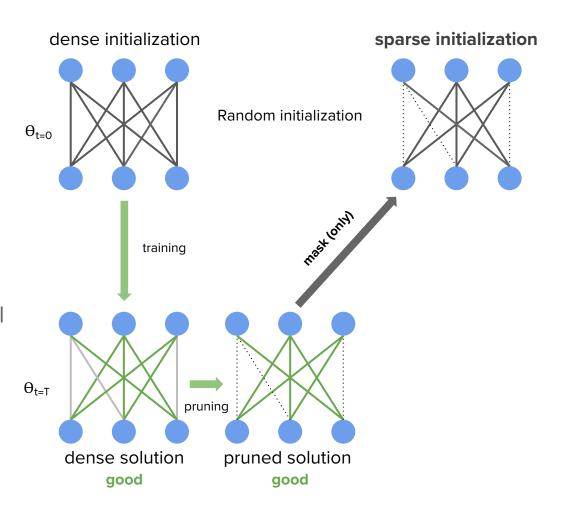
Naive Sparse Training

- Can we train sparse neural networks from random initialization?
- Let's use only the knowngood mask from pruning
- Try to train our sparse model from "scratch", i.e. from random initialization...

—— High saliency weight

—— Low saliency weight

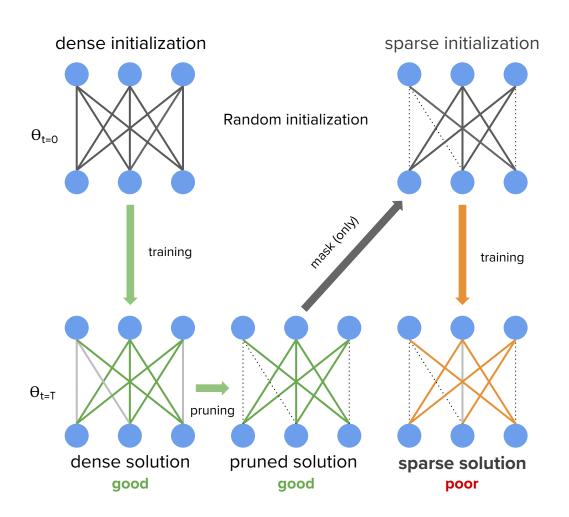
····· Masked weight



Sparse Training Problem

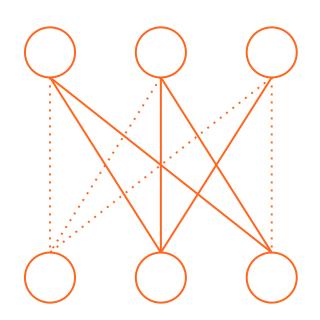
 The sparsely trained model (sparse solution) doesn't generalize as well as the original dense solution or pruned solution!

High saliency weightLow saliency weightMasked weight



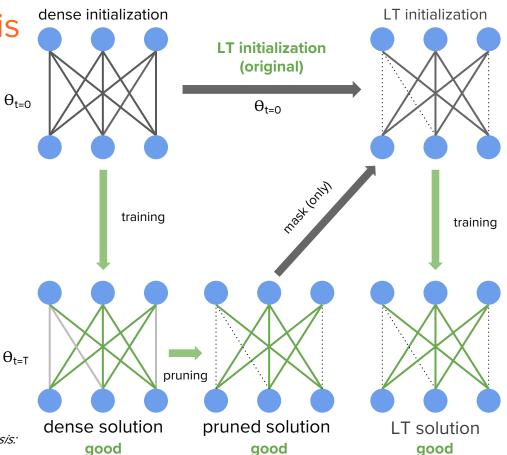
3. Background

i. Weight Symmetryii. Sparse Training Problemiii. Lottery Ticket Hypothesis



Lottery Ticket Hypothesis

- An unstructured sparse NN, when trained from a Lottery Ticket "initialization" can generalize well
- This initialization was the original initialization the dense (pruned) model was trained from

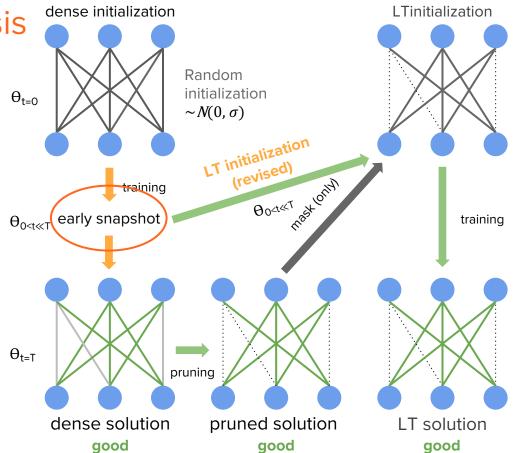


Jonathan Frankle and Michael Carbin. *The Lottery Ticket Hypothesis: Training Pruned Neural Networks.* International Conference on Learning Representations (ICLR), 2019

Lottery Ticket Hypothesis (revised)

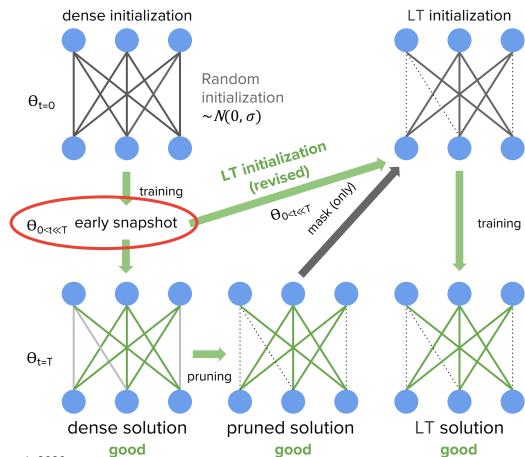
 This initialization was the original initialization the dense (pruned) model was trained from

- LT initialization in general is weights from early training¹
- This is very expensive to find



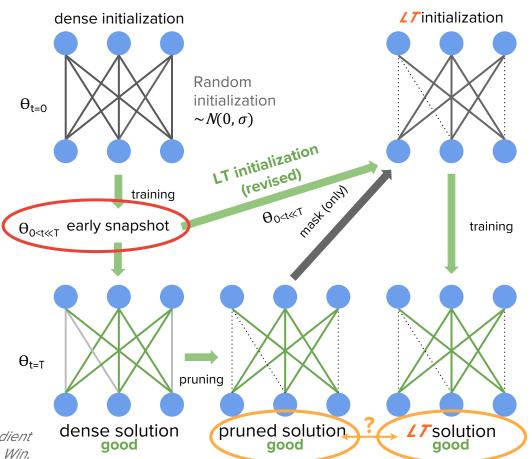
Lottery Tickets

How random is the LT initialization?

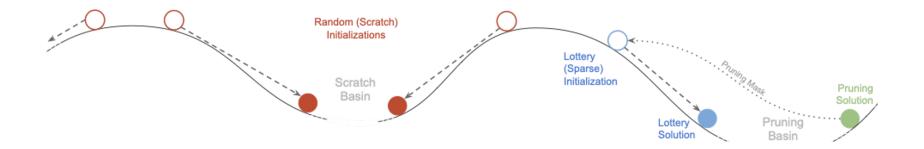


Lottery Tickets

- How "random" is the LTH "initialization"? Not very...
- LTH doesn't work with an arbitrary random init!
- In previous work we showed LTs are re-learning extremely similar solutions within the same basin¹



¹Utku Evci, Yani Ioannou, Cem Keskin, Yann Dauphin. *Gradient Flow in Sparse Neural Networks and How Lottery Tickets Win.* AAAI 2022

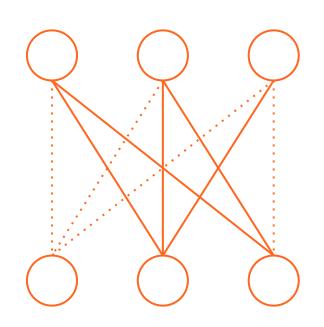


- 1. LT solution is close to the pruned solution
- 2. LT/pruned solution is the same basin of convergence
- 3. LT/pruned solution's learn very similar functions

LTs appear to re-learn the pruned solution they are derived from

Sparse Training: Aligning Sparse Masks with Weight Symmetry

- 1. Short Biography
- 2. Motivation
- 3. Background
- 4. Aligning Sparse Masks



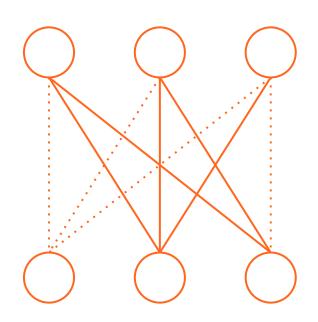
4. Aligning Sparse Masks

i. Hypothesis

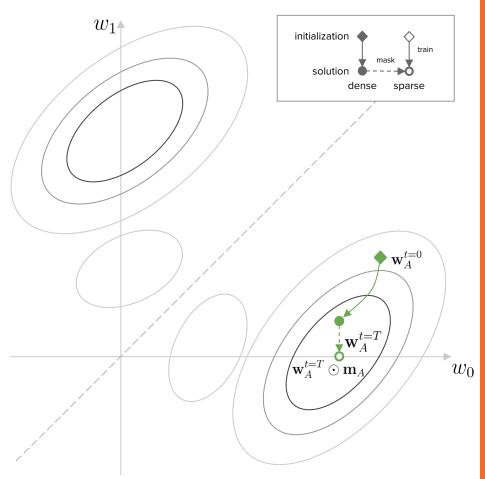
ii. Experimental Methodology

iii. Results

iv. Analysis



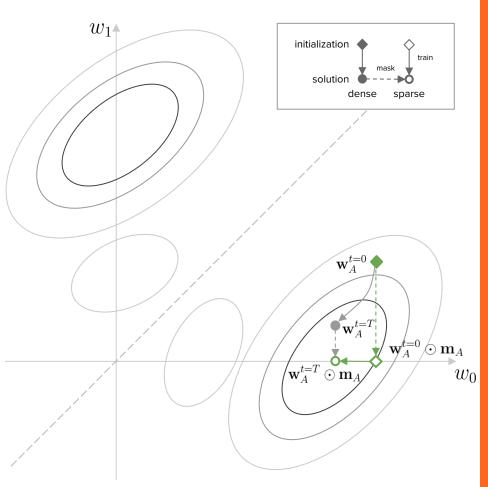
Pruning Loss Landscape



- loss landscape with two weights $\mathbf{w}_A = (w_0, w_1)$
- lacktriangle Train from $\mathbf{w}_A^{t=0}$ to soln. $\mathbf{w}_A^{t=T}$
- Prune $\mathbf{w}_A^{t=T}$ with $\mathbf{m}_A = (1,0)$

Figure 7. A 2D loss landscape visualization of our method in the setting of a model with a single layer and two parameters on a single input scale.

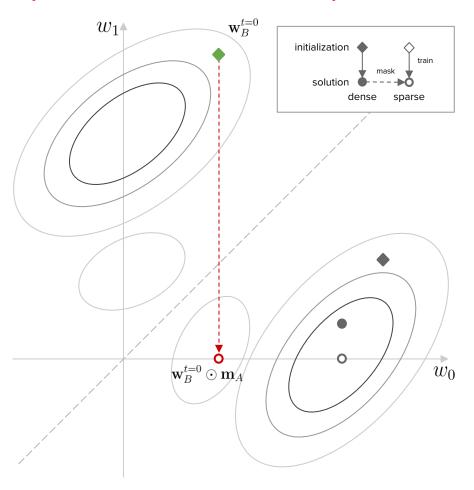
LTH Loss Landscape



- Project (prune) re-using **m**_A
- Train from $\mathbf{w}_A^{t=0} \odot \mathbf{m}_A$
- End training at $\mathbf{w}_A^{t=T} \odot \mathbf{m}_A$

Figure 7. A 2D loss landscape visualization of our method in the setting of a model with a single layer and two parameters on a single input scale.

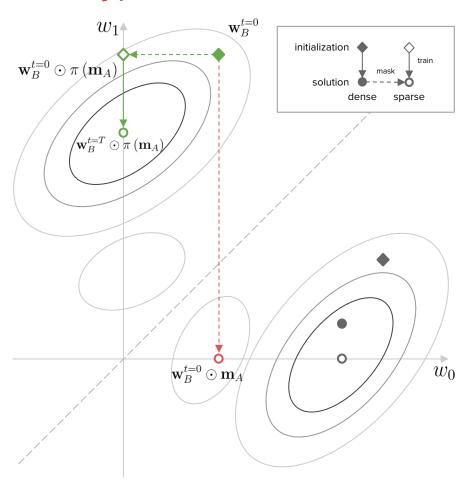
Sparse Loss Landscape



- Train w/ new random init. $\mathbf{w}_{B}^{t=0}$
- Re-using \mathbf{m}_A is illustrated
 - This is clearly the wrong axis to project to from new initialization
 - Masked init falls outside basin
- Training from $\mathbf{w}_B^{t=0} \odot \mathbf{m}_A$ doesn't find good soln.

Figure 7. A 2D loss landscape visualization of our method in the setting of a model with a single layer and two parameters on a single input scale.

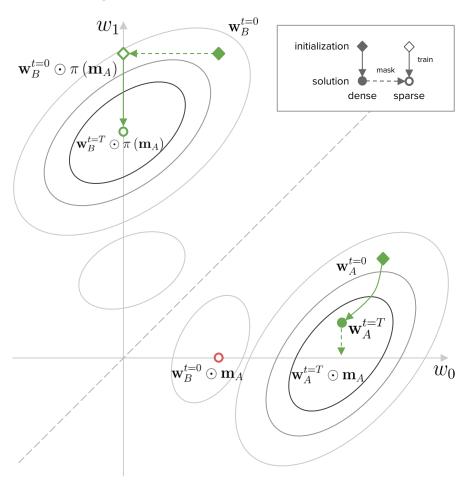
Our Hypothesis



- Hypothesis: Sparse training from random init does not work well because the mask is misaligned with the new basin of $w_B^{t=0}$
- Can we adapt the mask m_A derived from $w_A^{t=0}$ for $w_B^{t=0}$?

Figure 7. A 2D loss landscape visualization of our method in the setting of a model with a single layer and two parameters on a single input scale.

Our Hypothesis



• Recall¹: the basins of $w_A^{t=T}$ and $w_B^{t=T}$ are related by a permutation π :

$$\pi(\mathbf{w}_A^{t=T}) = \mathbf{w}_B^{t=T}$$

 Are the masks for different basins also related by the same permutation?

$$\pi(\mathbf{m}_A) = \mathbf{m}_B$$

¹Samuel K. Ainsworth, Jonathan Hayase, Siddhartha Srinivasa. Git Re-Basin: Merging Models modulo Permutation Symmetries. ICLR 2023.

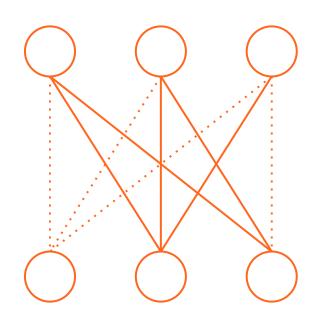
4. Aligning Sparse Masks

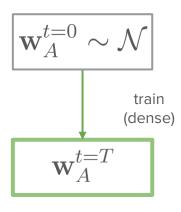
i. Hypothesis

ii. Experimental Methodology

iii. Results

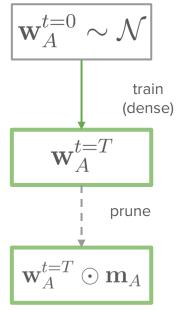
iv. Analysis





Dense Solution

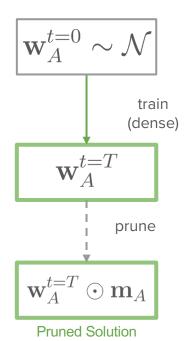
Dense Training



Pruned Solution

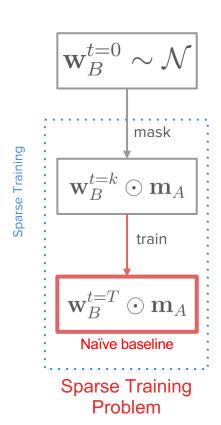
Dense Training & Pruning

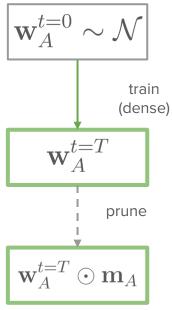
train _____ mask ____ = ___ match ____ match



Dense Training & Pruning

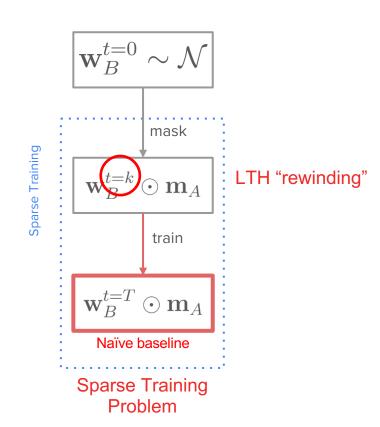
train _____ mask ____ = ___ match ____ match

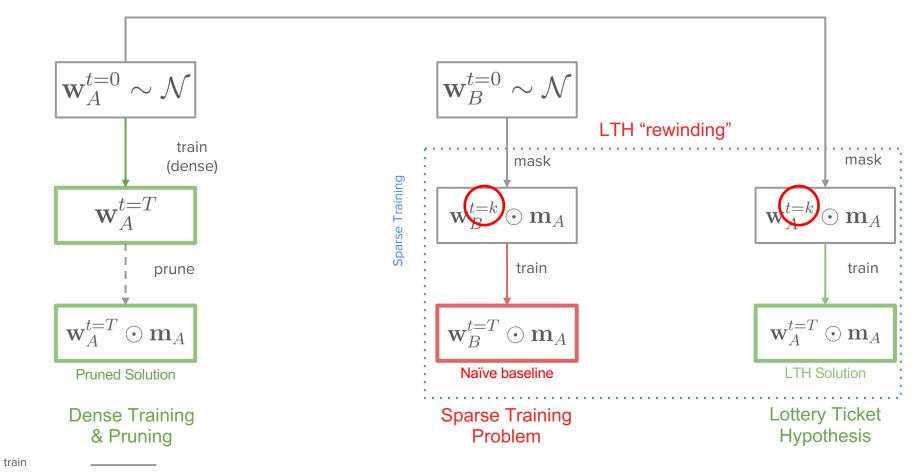




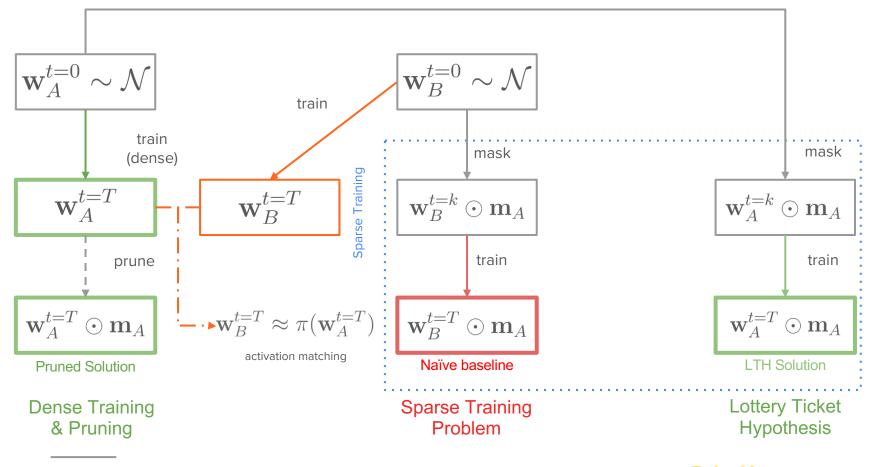
Pruned Solution

Dense Training & Pruning

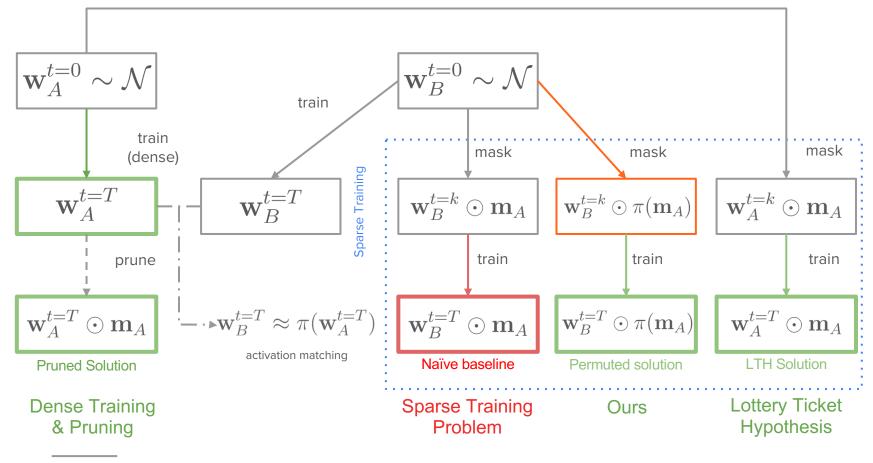




mask match UNIVERSITY OF CALGARY

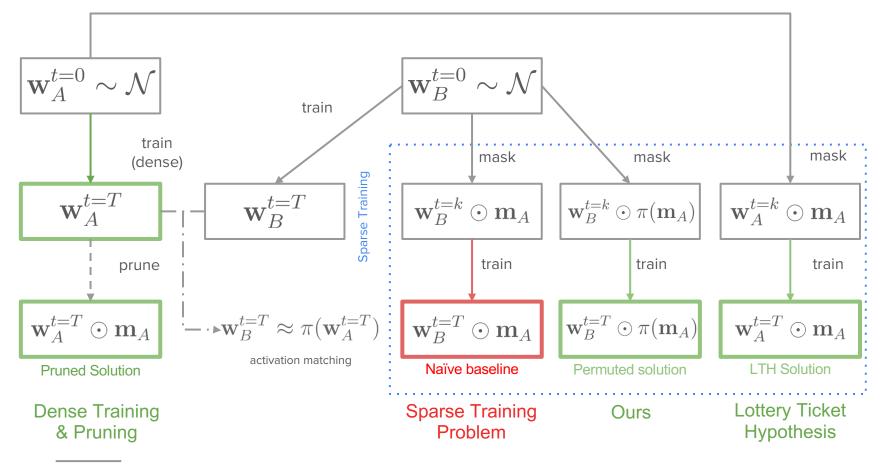


train mask — — — — match — — — —



train mask

match



train mask

match

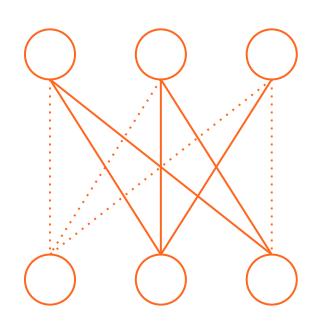
4. Aligning Sparse Masks

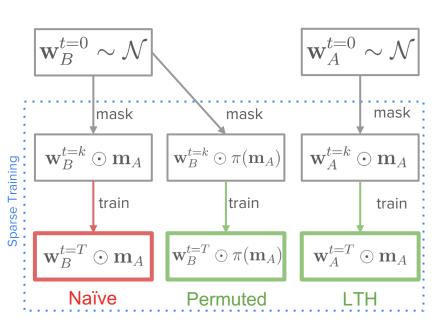
i. Hypothesis

ii. Experimental Methodology

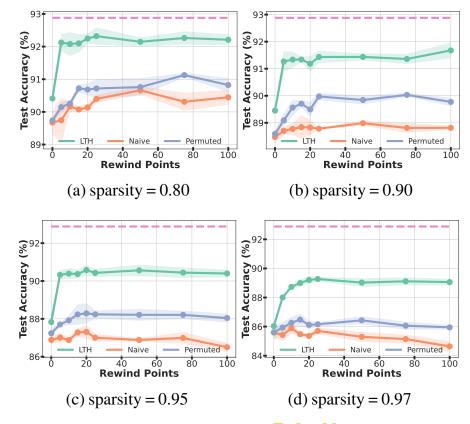
iii. Results

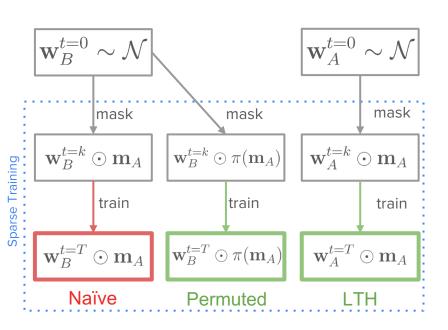
iv. Analysis



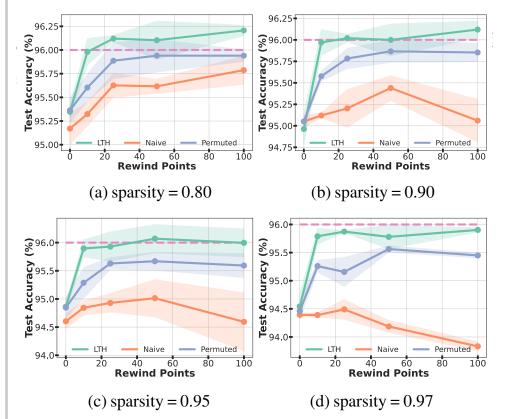


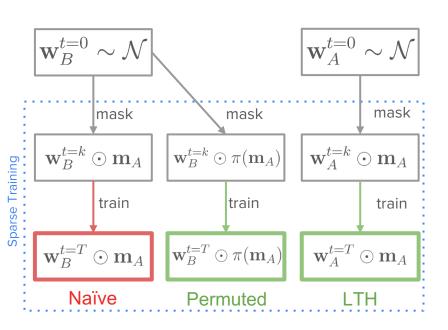
ResNet20 x {Width 1} on CIFAR-10



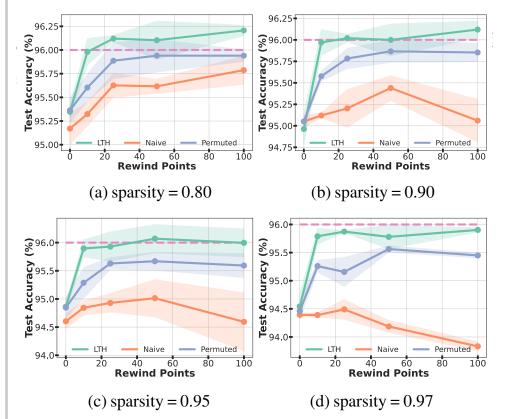


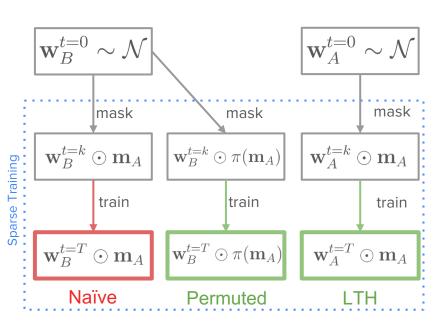
ResNet20 x {Width 8} on CIFAR-10



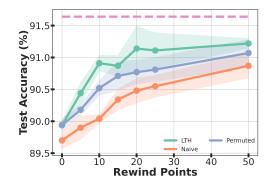


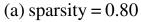
ResNet20 x {Width 8} on CIFAR-10

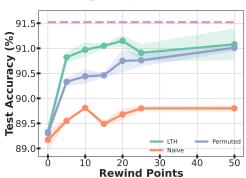




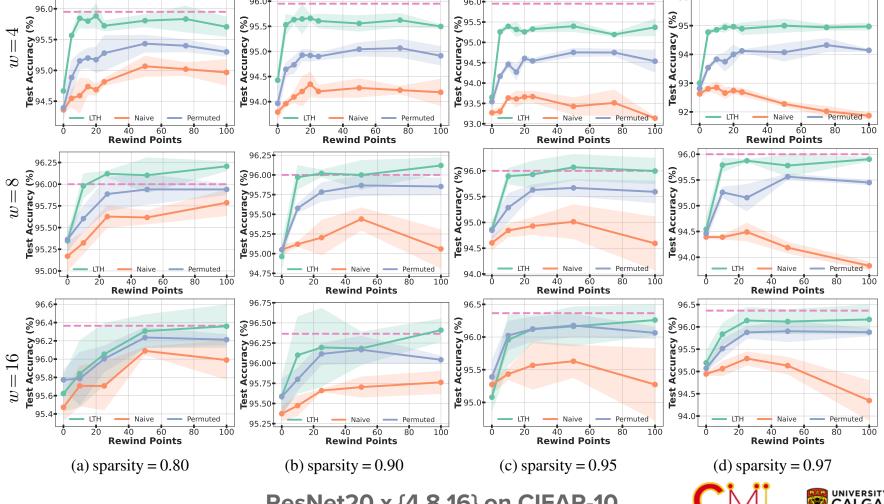
VGG11 x {Width 1} on CIFAR-10



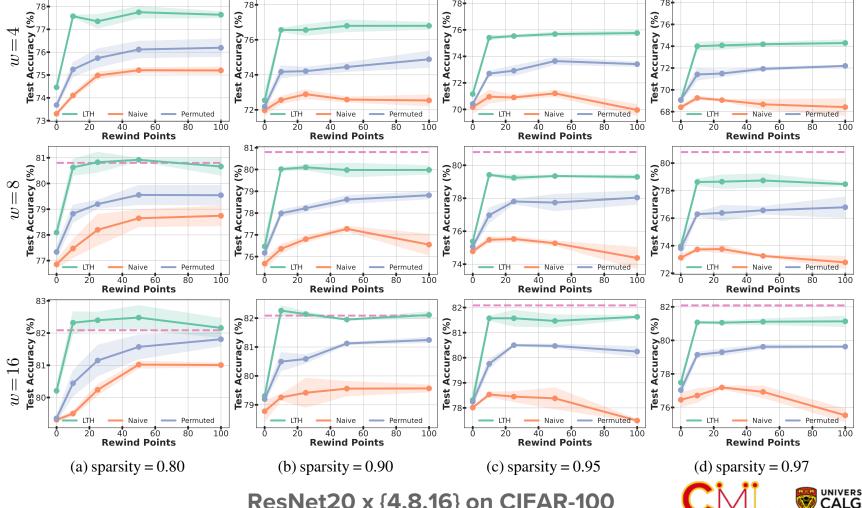




(b) sparsity =
$$0.90$$



ResNet20 x {4,8,16} on CIFAR-10



ResNet20 x {4,8,16} on CIFAR-100

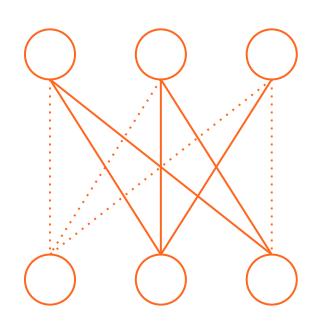
4. Aligning Sparse Masks

i. Hypothesis

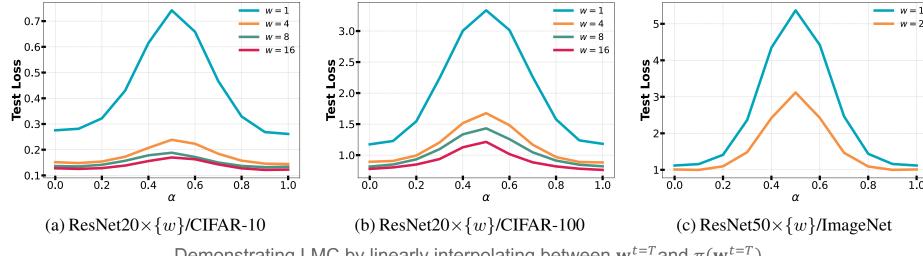
ii. Experimental Methodology

iii. Results

iv. Analysis



Effect of Model Width Multiplier

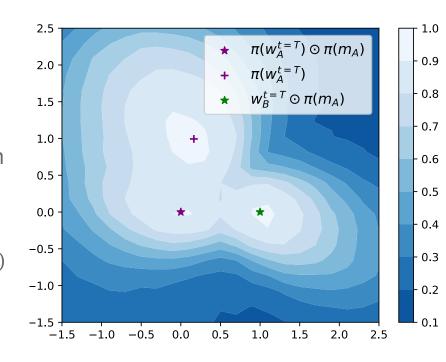


Demonstrating LMC by linearly interpolating between $\mathbf{w}_{R}^{t=T}$ and $\pi(\mathbf{w}_{R}^{t=T})$.

- Larger width exhibits better linear mode connectivity, i.e. lower loss barriers between $\mathbf{w}_{B}^{t=T}$ and $\pi(\mathbf{w}_{B}^{t=T})$
- As the width of the model increases, the approximate permutation matching algorithm is more accurate, reducing the loss barrier
- Our results are best when model width multiplier is high

Analysis of 0-1 Loss Basin of Solutions

- If our permutation matching is only approximate, are solutions in same basin?
- Here we analyze the 0-1 loss of three solutions, plotting their planar cross-section
 - Permuted dense soln. A: $\pi(w_A^{t=T})$
 - Permuted masked soln. A: $\pi(\mathbf{w}_A^{t=T}) \odot \pi(\mathbf{m}_A)$
 - Soln. B masked by permuted mask: $\mathbf{w}_{R}^{t=T} \odot \pi(\mathbf{m}_{A})$



In same basin, but different modes

Functional Diversity

- Our previous work showed that the LTH relearns a highly similar solution
- Unlike LTH, we can reuse the LTH mask with different random initializations
- We do see improved function diversity over LTH, comparable to dense!
- More computationally efficient way to improve diversity than iterative magnitude pruning alone

Mask	Test Accuracy	Ensemble	Disagree-	KL	JS
	(%)	Acc. (%)	ment		
	ResNet20	\times {1}/CIFA	R-10		
none (dense)	92.76 ± 0.106	-	-	-	-
IMP	91.09 ± 0.041	93.25	0.093	0.352	0.130
LTH	91.15 ± 0.163	91.43	0.035	0.038	0.011
permuted	89.38 ± 0.170	91.75	0.107	0.273	0.091
naive	88.68 ± 0.205	91.07	0.113	0.271	0.089
	ResNet20	$\times \{4\}$ /CIFA	R-100		
none (dense)	78.37 ± 0.059	-	-	-	_
IMP	74.46 ± 0.321	79.27	0.259	1.005	0.372
LTH	75.35 ± 0.204	75.99	0.117	0.134	0.038
permuted	72.48 ± 0.356	<i>77.</i> 85	0.278	0.918	0.327
naive	71.05 ± 0.366	76.15	0.290	0.970	0.348

Conclusion

- The Lottery Ticket Hypothesis excited the community on the possibility of sparse training and sparse mask re-use, but LTH is limited to re-learning the same soln.
- We explain the sparse training problem: misalignment between a pruned mask and the loss basin of a new random initialization prevents effective re-use of sparse masks for training
- We show how to re-use a mask to find new solutions:
 - We can approximately permute an existing sparse mask for a new random initialization, although this is currently computationally expensive
 - We found the functional diversity of sparse training solutions to be comparable to dense training when using permuted masks.

Future Directions

- Improving the efficiency and/or efficacy of permutation alignment would make the method we propose more practical
- Explaining and/or avoiding weight "rewinding", i.e. checkpoints in LTH/sparse training
 - Notably Dynamic Sparse Training (DST) methods do not need this, but learn masks
- We see high function diversity with our method of sparse training:
 - Can we efficiently create ensembles using permutations of sparse masks?
 - Could help align weight sparse experts in MoEs for merging

Défense National nationale Defence

amazon science

Alliance de recherche numérique du Canada

Questions?

Yani loannou yani.ioannou@ucalgary.ca

What's Left After Distillation? How Knowledge Transfer Impacts Fairness and Bias

Aida Mohammadshahi

aida.mohammadshahi@ucalgary.ca

Yani Ioannou

yani.ioannou@ucalgary.ca

Department of Electrical and Software Engineering Schulich School of Engineering, University of Calgary Calgary, AB, Canada

 ${\bf Reviewed\ on\ Open Review:}\ \textit{https://openreview.net/forum?id=xBbj46Y2fN}$

Abstract

Knowledge Distillation is a commonly used Deep Neural Network (DNN) compression method, which often maintains overall generalization performance. However, we show that even for balanced image classification datasets, such as CIFAR-100, Tiny ImageNet and ImageNet, as many as 41% of the classes are statistically significantly affected by distillation when comparing class-wise accuracy (i.e. class bias) between a teacher/distilled student or distilled student/non-distilled student model. Changes in class bias are not necessarily an undesirable outcome when considered outside of the context of a model's usage. Using two common fairness metrics, Demographic Parity Difference (DPD) and Equalized Odds Difference (EOD) on models trained with the CelebA. Trifeature, and HateXplain datasets, our results suggest that increasing the distillation temperature improves the distilled student model's fairness and the distilled student fairness can even surpass the fairness of the teacher model at high temperatures, Additionally, we examine individual fairness, ensuring similar instances receive similar predictions. Our results confirm that higher temperatures also improve the distilled student model's individual fairness. This study highlights the uneven effects of distillation on certain classes and its potentially significant role in fairness, emphasizing that caution is warranted when using distilled models for sensitive application domains.

1 Introduction

DNNs require significant computational resources, resulting in large overheads in compute, memory, and energy. Decreasing this computational overhead is necessary for many real-world applications where these costs would otherwise be prohibitive, or even make their application infeasible—e.g. the deployment of DNNs on mobile phones or edge devices with limited resources (Chen et al., 2016; Cheng et al., 2018; Gupta and Agrawal, 2022; Menghani, 2023). To address this challenge, DNN model compression methods have been developed that reduce the size and complexity of DNNs while maintaining their generalization performance (Cheng et al., 2017). One such widely used model compression method is Knowledge Distillation (distillation) (Hinton et al., 2015). Distillation has found extensive application in both industry and academia across various domains of artificial intelligence, encompassing areas such as Natural Language Processing (NLP) (Jiao et al., 2019; Firet al., 2021; Liu et al., 2020), speech recognition (Ng et al., 2018; Gao et al., 2019; Perez et al., 2020), and visual recognition (Yan et al., 2019; out al., 2021; Liu et al., 2020 chawhet al., 2021; Jiao et al., 2020; Chawhet al., 2021; out al., 2021; do et al., 2020; chawhet al., 2021; out al., 2021; do et al., 2020; chawhet al., 2021; out al., 2021; do et al., 2020; chawhet al., 2021; do et al., 2020; do et

Distillation involves transferring knowledge from a complex model with superior performance (referred to as the teacher) to a simpler model (known as the student). In practice this allows the student model to achieve comparable or even better generalization than the teacher model, while using far fewer parameters (Hinton et al., 2015; Gou et al., 2021). Despite the widespread use of distillation, evaluation of the impact of distillation since its proposal by (Hinton et al., 2015) has overwhelmingly focused almost exclusively on the impact it has on generalization performance (Cho and Harihara, 2019). Mixadeh et al., 2020).

Aida Mohammadshahi MSc (Defended Jan. 2025)

ML Developer @ AltaML

- Presented at NeurIPS WiML
 Workshop in Dec. 2024
- Published in Transactions in Machine Learning Research (TMLR), March 2025

Calgary ML @ NeurIPS 2024

UNIVERSITY OF CALGARY

Tuesday, December 10th, 2024

Muslims in ML (MusiML) Workshop

2:30-3:00 p.m. (Lightning Talk) * 4:30-5:00 p.m. (Internal Poster Session), 6:30-8:00 p.m (Joint Poster Session for Affinity Groups)

* A Closer Look at Sparse Training in Deep Reinforcement Learning.

Muhammad Athar Ganaie, Vincent Michalski, Samira Ebrahimi Kahou, Yani loannou.

This paper explores sparse training in DRL, highlighting methods to improve dynamic sparse training performance at high sparsity, underscoring the need for DRL-specific strategies.

Long-Tail Learning with Language Model Guided Curricula.

Mohammed Adnan, Rahul Krishnan, **Yani loannou**.

Improving performance on long-tail classes by leveraging LLMs to build curricula.

Women in Machine Learning (WiML) Workshop

6:30 p.m - 8:00 p.m (Joint Poster Session for Affinity Groups)

Learning to Reweight Examples in Backdoor Defense.

Yufan Feng, Benjamin Tan, Yani Ioannou.

We extend the online sample reweighting method from robust learning to the context of backdoor defense.

What's Left After Distillation? How Knowledge Transfer Impacts Fairness and Bias.

Aida Mohammadshahi, Yani loannou.

We explore the impact of knowledge distillation temperature on fairness for language and image classification models.

Friday, December 13th, 2024

Main Conference

4:30-7:30 p.m. (Poster Session)

Navigating Extremes: Dynamic Sparsity in Large Output Spaces.

Nasibullah Nasibullah, Erik Schultheis, Mike Lasby, Yani loannou, Rohit Babbar.

Investigates Dynamic Sparse Training for large output spaces. Leveraging semi-structured sparsity, intermediate layers, and auxiliary loss, it enables end-to-end training with millions of labels.

Poster Location: East Exhibit Hall A-C #2004

Saturday, December 14th, 2024

UniReps: Unifying Representations in Neural Models

4:30-7:30 p.m. (Poster Session)

Winning Tickets from Random Initialization: Aligning Masks for Sparse Training.

Rohan Jain, Mohammed Adnan, Ekansh Sharma, Yani loannou.

Lottery Tickets can't be trained from random init. We show that permuting the mask to align with the new initialization's optimization basin results in a mask that better approaches LTH generalization.

- Neural Information Processing
 Systems (NeurIPS) 2024 in
 Vancouver
- 5 different works being presented by 6 CML students across main conference and workshops

Calgary ML Lab @ ICML 2025

Monday, July 14th, 2025

4th Muslims in ML (MusiML) Workshop

West Meeting Room 211-214, 3:00 - 4:00 p.m. (Poster Session)

<u>Does Compression Exacerbate Large Language Models' Social Bias?</u>

Muhammad Athar Ganaie - Mohammed Adnan - Arfa Raja - Shaina Raza - Yani laannou

Women in Machine Learning (WiML) Symposium

West Meeting Room 211-214, 3:00 - 4:00 p.m. (Poster Session)

Backdooring VLMs via Concept-Driven Triggers

Yufan Feng · Weimin Lyu · Yuxin Wang · Benjamin Tan · Yani loannou

Tuesday, July 15th, 2025

Main Conference

East Exhibition Hall A-B, 11:00 a.m. - 1:30 p.m. (Poster Session)

Sparse Training from Random Initialization:

Aligning Lottery Ticket Masks using Weight Symmetry

Aligning Lottery Ticket Masks using Weight Symmetry

Mohammed Adnan · Rohan Jain · Ekansh Sharma · Rahul G. Krishnan · Yani loannou

Poster Location: East Exhibition Hall A-B #E-2106

Friday, July 18th, 2025

3rd Workshop on High-dimensional Learning Dynamics (HiLD)

West Meeting Room 118-120, 4:45 - 5:30 p.m. (Poster Session)

Understanding Normalization Layers for Sparse Training

Mohammed Adnan · Ekansh Sharma · Rahul G. Krishnan · Yani loannou

Saturday, July 19th, 2025

3rd Workshop on Efficient Systems for Foundation Models (ES-FoMo III)

East Exhibition Hall A, 1:00 - 2:30 p.m (Poster Session)

SD2: Self-Distilled Sparse Drafters

Mike Lasby · Nish Sinnadurai · Valavan Manohararajah · Sean Lie · Yani loannou · Vithursan Thangarasa

Data in Generative Models Workshop: The Bad, the Ugly, and the Greats (DIG-BUGS)

West Ballroom A, 3:00 - 3:45 p.m (Poster Session)

Backdooring VLMs via Concept-Driven Triggers

Yufan Feng · Weimin Lyu · Yuxin Wang · Benjamin Tan · Yani loannou

Workshop on Technical Al Governance

West Meeting Room 109-110, 3:00 - 4:00 p.m (Poster Session)

Exploring Functional Similarities of Backdoored Models

Yufan Feng · Benjamn Tan · Yani loannou

- International Machine
 Learning Conference (ICML)
 2025 in Vancouver in July
- Five students from CML Lab presenting 6 different works across 6 workshops and the main conference