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Why Sparse Neural Networks?

● We will focus on weight sparsity, but there 
are other forms of sparsity (e.g. activation)

● Reducing the cost of NN training and 
inference

● Learning NN structure from data

● Understanding & improving NN training



Motivation: Efficiency

● State of the art models are becoming 
exponentially more expensive to train

● AI Research is less accessible

● Inference cost is increasingly 
important, sparse training shows 
promise in learning better masks for 
inference than pruning

Training Cost (FLOPS) for State-of-the-Art ML Models 
(data Epoch AI)



Motivation: Learning NN Structure

● In practice we rarely use fully-connected NNs 
for learning representations (features)…

● Instead, we must use our domain knowledge 
to change the structure of the model

● CNNs, Transformers, Graph NNs, …

● These are technically sparse neural networks 
also, but are hand-designed, not learned

● Can we learn NN structure & inductive 
biases from data?



Motivation: Understanding Learning

● Training NNs from random initialization is 
unreasonably effective… but not always

● Much of the “deep learning” progress can be 
attributed to improved NN training:

○ Initialization, normalization, residual 
connections, etc.

● Sparsity breaks NN training

● Understanding sparse training could improve 
our  fundamental understanding of training



Calgary ML Lab Research
What we have been doing:

● Using SOTA sparse training methods to accelerate
practical real-world problems, e.g.:

○ Dynamic Sparse Training with Structured Sparsity. Mike 
Lasby, Anna Golubeva, Utku Evci, Mihai Nica, and Yani 
Ioannou. In International Conference on Learning 
Representations (ICLR), Vienna, Austria 2024.

○ Navigating Extremes: Dynamic Sparsity in Large Output 
Spaces. Nasib Ullah, Erik Schultheis, Mike Lasby,  Yani 
Ioannou, and Rohit Babbar. In 38th Annual Conference 
Neural Information Processing Systems (NeurIPS) 2024, 
Vancouver, BC, Canada 2024.



● International Conference for Learning 
Representations (ICLR) 2024

Published as a conference paper at ICLR 2024
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ABSTRACT

Dynamic Sparse Training (DST) methods achieve state-of-the-art results in sparse
neural network training, matching the generalization of dense models while
enabling sparse training and inference. Although the resulting models are highly
sparse and theoretically less computationally expensive, achieving speedups with
unstructured sparsity on real-world hardware is challenging. In this work, we
propose a sparse-to-sparse DST method, Structured RigL (SRigL), to learn a
variant of fine-grained structured N:M sparsity by imposing a constant fan-in
constraint. Using our empirical analysis of existing DST methods at high sparsity,
we additionally employ a neuron ablation method which enables SRigL to achieve
state-of-the-art sparse-to-sparse structured DST performance on a variety of Neural
Network (NN) architectures. Using a 90% sparse linear layer, we demonstrate a
real-world acceleration of 3.4→/2.5→ on CPU for online inference and 1.7→/13.0→
on GPU for inference with a batch size of 256 when compared to equivalent
dense/unstructured (CSR) sparse layers, respectively.

1 INTRODUCTION

Dynamic Sparse Training (DST) methods such as RigL (Evci et al., 2021) are the state-of-the-art in
sparse training methods for Deep Neural Networks (DNNs). DST methods typically learn unstructured
masks resulting in 85–95% fewer weights than dense models, while maintaining dense-like general-
ization and typically outperforming masks found via pruning. Furthermore, sparse-to-sparse DST algo-
rithms are capable of employing sparsity both during training and inference, unlike pruning and dense-
to-sparse DST methods such as SR-STE (Zhou et al., 2021) which only exploit sparsity at inference time.

While models trained with DST methods are highly sparse and enable a large reduction in Floating
Point Operations (FLOPs) in theory, realizing these speedups on hardware is challenging when the
sparsity pattern is unstructured. Even considering recent advances in accelerating unstructured Sparse
Neural Networks (SNNs) (Gale et al., 2020; Elsen et al., 2020; Ji & Chen, 2022), structured sparsity
realizes much stronger acceleration on real-world hardware. On the other hand, structured sparse
pruning often removes salient weights, resulting in worse generalization than comparable unstructured
SNNs for the same sparsity level (Fig. 1a). Our work presents a best-of-both-worlds approach:
we exploit the DST framework to learn both a highly-sparse and structured representation while
maintaining generalization performance. In summary, our work makes the following contributions:

1. We propose a novel sparse-to-sparse DST method, Structured RigL (SRigL), based on
RigL (Evci et al., 2021). SRigL learns a SNN with constant fan-in fine-grained structured
sparsity (Fig. 1a) while maintaining generalization comparable with RigL up to a high sparsity
level (99%) for a variety of network architectures. This structure is a particular case of “N:M
sparsity” which requires N out of M consecutive weights to be non-zero (Mishra et al., 2021).

2. Our empirical analysis shows RigL, at sparsity levels > 90%, ablates whole neurons. By allow-
ing neuron ablation in SRigL, we match RigL generalization even in this high-sparsity regime.

3. We enable neuron ablation in SRigL across all sparsity regimes. We find this structured
sparsity is complementary to the constant fan-in sparsity in improving real-world inference
timings while maintaining generalization comparable to unstructured DST methods.

→{mklasby,yani.ioannou}@ucalgary.ca, golubeva@mit.edu, evcu@google.com, nicam@uoguelph.ca
Our source code is available here.
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What we have been doing:

● Understanding why sparse training is difficult

○ Sparse Training from Random Initialization: Aligning 
Lottery Ticket Masks using Weight Symmetry. 
Mohammed Adnan, Rohan Jain, Ekansh Sharma, Rahul 
Krishnan, and Yani Ioannou. In Proceedings of Forty-
second International Conference on Machine Learning 
(ICML) 2025, Vancouver, BC, Canada. 

○ Gradient Flow in Sparse Neural Networks and How 
Lottery Tickets Win. Utku Evci,  Yani A. Ioannou, Cem 
Keskin, and Yann Dauphin. In Proceedings of the 36th 
AAAI Conference on Artificial Intelligence (AAAI) 2022.



● Presented at International Conference 
on Machine Learning (ICML) 2025
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Sparse Training from Random Initialization:

Aligning Lottery Ticket Masks using Weight Symmetry

Mohammed Adnan * 1 2 Rohan Jain * 1 Ekansh Sharma 3 2 Rahul G. Krishnan 3 2 Yani Ioannou 1

Abstract
The Lottery Ticket Hypothesis (LTH) suggests
there exists a sparse LTH mask and weights that
achieve the same generalization performance as
the dense model while using significantly fewer
parameters. However, finding a LTH solution is
computationally expensive, and a LTH’s sparsity
mask does not generalize to other random weight
initializations. Recent work has suggested that
neural networks trained from random initialization
find solutions within the same basin modulo per-
mutation, and proposes a method to align trained
models within the same loss basin. We hypothe-
size that misalignment of basins is the reason why
LTH masks do not generalize to new random ini-
tializations and propose permuting the LTH mask
to align with the new optimization basin when per-
forming sparse training from a different random
init. We empirically show a significant increase in
generalization when sparse training from random
initialization with the permuted mask as compared
to using the non-permuted LTH mask, on multiple
datasets (CIFAR-10/100 & ImageNet) and models
(VGG11 & ResNet20/50). Our codebase for re-
producing the results is publicly available at here.

1. Introduction
In recent years, foundation models have achieved state-of-
the-art results for different tasks. However, the exponential
increase in the size of state-of-the-art models requires a
similarly exponential increase in the memory and compu-
tational costs required to train, store and use these models —
decreasing the accessibility of these models for researchers
and practitioners alike. To overcome this issue, different
model compression methods, such as pruning, quantization

*Equal contribution 1 Schulich School of Engineering,
University of Calgary 2Vector Institute for AI 3Dept. of Com-
puter Science, University of Toronto. Correspondence to:
Mohammed Adnan <adnan.ahmad@ucalgary.ca>, Yani Ioannou
<yani.ioannou@ucalgary.ca>.

and knowledge distillation, have been proposed to reduce
the model size at different phases of training or inference.
Post-training model pruning (Han et al., 2016) has been
shown to be effective in compressing the model size, and
seminal works have demonstrated that large models can be
pruned after training with minimal loss in accuracy (Gale
et al., 2019; Han et al., 2015). While model pruning makes
inference more efficient, it does not reduce the computational
cost of training the model.

Motivated by the goal of training a sparse model from a
random initialization, Frankle & Carbin (2019) demonstrated
that training with a highly sparse mask is possible and
proposed the Lottery Ticket Hypothesis (LTH) to identify
sparse subnetworks that, when trained, can match the
performance of a dense model. The key caveat is that a dense
model must first be trained to find the sparse mask, which
can only be used with the same random initialization that was
used to train the dense model. Despite LTH seeing significant
interest in the research community, LTH masks cannot be
used to train from a new random initialization. Furthermore,
it has been observed empirically that the LTH is impractical
for finding a diverse set of solutions (Evci et al., 2022).

This posits our main research questions: How can we train a
LTH mask from a different random initialization while main-
taining good generalization? Would doing so find a more
diverse set of solutions than observed with the LTH itself?

In this work, we try to understand why the LTH does not
work for different random initializations from a weight-space
symmetry perspective. Our hypothesis is that to reuse
the LTH winning ticket mask with a different random
initialization, the winning ticket mask obtained needs to
be permuted such that it aligns with the optimization basin
associated with the new random initialization. We illustrate
our hypothesis in Figure 1.

To empirically validate our hypothesis, we obtain a sparse
mask using Iterative Magnitude Pruning (IMP) (Renda et al.,
2020; Han et al., 2015) on modelA (from Figure 1) and show
that given a permutation that aligns the optimization basin
of model A and a new random initialization, the mask can
be reused. The sparse model (with the permuted mask) can
be trained to closer match the generalization performance

1
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3. Background

i. Weight Symmetry
ii. Sparse Training Problem
iii. Lottery Ticket Hypothesis



Weight Symmetry: Foundations

𝑓(𝒙)

Robert Hecht-Nielsen. On The Algebraic Structure of Feed-forward Network Weight Spaces.
Advanced Neural Computers. 1990.

● NN layers are permutation invariant: the 
ordering of neurons is arbitrary

● Different permutations result in the same 
function, but different parameterizations

○ i.e. model is a different point in weight space

● NN are an example of what is generally 
known as a symmetric function



Weight Symmetry: Foundations

● Different permutations result in same 
function, but different weight 
parameterizations

● For a NN with 𝐿 layers, and layer width 
𝑤, the number of permutations is:

𝒘! 𝑳

● NN permutations often number more 
than atoms in universe (10"#)

≡"
!

𝒘! ⋅ 𝒙 ≡

𝒘" 𝒘# 𝒘# 𝒘"

𝑓(𝒙; 𝛉!,#)𝑓(𝒙; 𝛉#,!)

𝜽",# = 𝒘"
% , 𝒘#%

%
𝜽#," = 𝒘#% , 𝒘"

% %

Robert Hecht-Nielsen. On The Algebraic Structure of Feed-forward Network Weight Spaces. 
Advanced Neural Computers. 1990.



Weight Symmetry: Implications

● No unique minima (or solutions) in 
weight space

● Why 1st-order optimization can find 
good solutions with random init2

● May exist only one “basin” modulo 
permutations1,2, e.g. why random init. 
find similar solutions…

≡

𝒘" 𝒘# 𝒘# 𝒘"

𝑓(𝒙; 𝛉!,#)𝑓(𝒙; 𝛉#,!)

1Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation invariance in 
linear mode connectivity of neural networks. ICLR 2022.
2Samuel K. Ainsworth, Jonathan Hayase, Siddhartha Srinivasa. Git Re-Basin: Merging Models modulo 
Permutation Symmetries. ICLR 2023.



Permutation Alignment/Mapping

● Finding exact  𝜋 for deep NN is NP Hard

● Greedy approximation w/ weight matching1

○ Linear Assignment Problem (LAP) per layer

○ Maximizes correlation of weights/activations

○ Best results empirically for very wide NNs

● Activation matching more robust in general2

1Samuel K. Ainsworth, Jonathan Hayase, Siddhartha Srinivasa. Git Re-Basin: Merging Models modulo 
Permutation Symmetries. ICLR 2023.
2Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur. Repair: Renormalizing 
permuted activations for interpolation repair. ICLR 2023.

≡

𝒘" 𝒘# 𝒘# 𝒘"

𝑓(𝒙; 𝛉!,#)𝑓(𝒙; 𝛉#,!)

𝜋
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Standard NN Training

training

dense initialization

dense solution

ϴt=T

ϴt=0

good

● Train a dense NN from a 
random initialization to find a 
dense solution

● This solution generalizes 
well — in fact similarly even 
for different random init.!

● Recall: weight symmetry 
can explain this

Random initialization
~N(0,	𝜎)

High saliency weight

Low saliency weight

Masked weight



Unstructured Pruning

training

dense solution pruned solution

pruning
ϴt=T

ϴt=0

good good

● Prune low saliency weights
○ Most commonly remove 

smallest magnitude weights

● "One-shot" pruning
○ Train and then prune once

● Iterative pruning
○ Train a bit, prune a bit, repeat 

several times

Random initialization
~N(0,	𝜎)

High saliency weight

Low saliency weight

Masked weight

dense initialization



training

dense solution pruned solution

pruning

mas
k (

on
ly)

sparse initialization

ϴt=T

ϴt=0

good good

● We know we don't need 
~85-95% of weights at 
inference…

● Lots of methods to prune 
after training… but can we 
train pruned NNs from 
random initialization?

Random initialization

Sparse Training?

High saliency weight

Low saliency weight

Masked weight

dense initialization



training

dense solution pruned solution

pruning

mas
k (

on
ly)

sparse initialization

ϴt=T

ϴt=0

good good

● Can we train sparse neural 
networks from random 
initialization?

● Let’s use only the known-
good mask from pruning

● Try to train our sparse model 
from "scratch", i.e. from 
random initialization…

Random initialization

Naive Sparse Training

High saliency weight

Low saliency weight

Masked weight

dense initialization



training

dense solution pruned solution

pruning

mas
k (

on
ly)

sparse solution

training

ϴt=T

ϴt=0

good good poor

● The sparsely trained model 
(sparse solution) doesn't 
generalize as well as the 
original dense solution or 
pruned solution!

Random initialization

Sparse Training 
Problem

High saliency weight

Low saliency weight

Masked weight

sparse initializationdense initialization
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Lottery Ticket Hypothesis

● An unstructured sparse NN, 
when trained from a Lottery 
Ticket "initialization" can 
generalize well

● This initialization was the 
original initialization the 
dense (pruned) model was 
trained from

LT initialization
(original)

dense initialization

dense solution pruned solution

pruning

LT initialization

LT solution

training

ϴt=T

ϴt=0

good good good

mas
k (

on
ly)

training

ϴt=0

Jonathan Frankle and Michael Carbin. The Lottery Ticket Hypothesis: 
Training Pruned Neural Networks. International Conference on 
Learning Representations (ICLR), 2019



1Linear Mode Connectivity and the Lottery Ticket Hypothesis. Frankle et al., 2020

Lottery Ticket Hypothesis 
(revised)
● This initialization was the 

original initialization the 
dense (pruned) model was 
trained from

● LT initialization in general is 
weights from early training1

● This is very expensive to find

Random 
initialization
~N(0,	𝜎)

dense initialization

dense solution pruned solution

pruning

training

ϴt=T

ϴt=0

good good good

LT initialization

(revised)
training

ϴ0<t≪T early snapshot mas
k (

on
ly)

ϴ0<t≪T

LT solution

LTinitialization

http://proceedings.mlr.press/v119/frankle20a.html


● How random is the LT 
initialization?

Lottery Tickets
Random 
initialization
~N(0,	𝜎)

dense initialization

dense solution pruned solution

pruning

LT initialization

LT solution

training

ϴt=T

ϴt=0

good good good

LT initialization

(revised)

mas
k (

on
ly)

ϴ0<t≪T

1Stabilizing the Lottery Ticket Hypothesis, Frankle et al., 2019
2Linear Mode Connectivity and the Lottery Ticket Hypothesis, Frankle et al., 2020

training

ϴ0<t≪T early snapshot

https://arxiv.org/abs/1903.01611
http://proceedings.mlr.press/v119/frankle20a.html


● How “random” is the LTH 
“initialization”? Not very…

● LTH doesn’t work with an 
arbitrary random init!

● In previous work we 
showed LTs are re-learning 
extremely similar solutions 
within the same basin1

Lottery Tickets
Random 
initialization
~N(0,	𝜎)

dense initialization

dense solution pruned solution

pruning

LT initialization

LT solution

training

ϴt=T

ϴt=0

good good good

LT initialization

(revised)

mas
k (

on
ly)

ϴ0<t≪T

?

training

ϴ0<t≪T early snapshot

1Utku Evci, Yani Ioannou, Cem Keskin, Yann Dauphin. Gradient 
Flow in Sparse Neural Networks and How Lottery Tickets Win. 
AAAI 2022



1. LT solution is close to the pruned solution

2. LT/pruned solution is the same basin of convergence

3. LT/pruned solution’s learn very similar functions

LTs appear to re-learn the pruned solution they are derived from

Utku Evci, Yani Ioannou, Cem Keskin, Yann Dauphin. Gradient Flow in Sparse Neural Networks and How 
Lottery Tickets Win. AAAI 2022
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Figure 7. A 2D loss landscape visualization of our method in the setting of a model with a 
single layer and two parameters on a single input scale.

● loss landscape with two 
weights 𝐰𝑨 = (𝒘𝟎, 𝒘𝟏)

● Train from 𝐰'𝒕)𝟎 to soln. 𝐰'𝒕)𝑻

● Prune 𝐰'𝒕)𝑻 with 𝐦' = (1, 0)

Pruning Loss Landscape
initialization  

sparse
solution

dense

mask
train



● Project (prune) re-using 𝐦'

● Train from 𝐰'𝒕)𝟎⨀𝐦'

● End training at 𝐰'𝒕)𝑻⨀𝐦'

Figure 7. A 2D loss landscape visualization of our method in the setting of a model with a 
single layer and two parameters on a single input scale.

initialization  

sparse
solution

dense

mask
train

LTH Loss Landscape



● Train w/ new random init. 𝐰+
𝒕)𝟎

● Re-using 𝐦' is illustrated

○ This is clearly the wrong axis to 
project to from new initialization

○ Masked init falls outside basin

● Training from 𝐰+
𝒕)𝟎⨀𝐦' doesn’t 

find good soln.

Figure 7. A 2D loss landscape visualization of our method in the setting of a model with a 
single layer and two parameters on a single input scale.

initialization  

sparse
solution

dense

mask
train

Sparse Loss Landscape



● Hypothesis: Sparse training from 
random init does not work well 
because the mask is misaligned with 
the new basin of w+

,)#

● Can we adapt the mask 𝐦𝑨 derived 
from 𝒘𝑨

𝒕)𝟎 for 𝒘𝑩
𝒕)𝟎?

Figure 7. A 2D loss landscape visualization of our method in the setting of a model with a 
single layer and two parameters on a single input scale.

initialization  

sparse
solution

dense

mask
train

Our Hypothesis



● Recall1: the basins of w',). and w+
,).

are related by a permutation 𝜋:

𝜋 w',). = w+
,).

● Are the masks for different basins 
also related by the same 
permutation?

𝜋 𝐦' = 𝐦+

initialization  

sparse
solution

dense

mask
train

Our Hypothesis

1Samuel K. Ainsworth, Jonathan Hayase, Siddhartha Srinivasa. Git Re-Basin: 
Merging Models modulo Permutation Symmetries. ICLR 2023.
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Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry

w
=
1

w
=
4

w
=
8

w
=
16

(a) sparsity = 0.80 (b) sparsity = 0.90 (c) sparsity = 0.95 (d) sparsity = 0.97

Figure 5. ResNet20→{w}/CIFAR-10.Test accuracy of sparse network solutions vs. increasing rewind points for different sparsity levels
and widths, w. The dashed (- -) line shows the dense model accuracy. The effect of the rewind point on the test accuracy for different
sparsities is shown. As the width increases, the gap between training from a random initialization with the permuted mask and the LTH/dense
baseline (dashed line) decreases, unlike training with the non-permuted mask (naive), showing a model trained with the permuted mask
generalizes better than naive.

between the permuted and the naive baseline is not large,
however for a higher sparsity level (90%), the permuted
solution significantly outperforms the naive solution as
shown in Figure 8b. For the VGG11 model, on increasing
the rewind point, the permuted solution closely matches
the accuracy of LTH, while the naive solution significantly
plateaus and does not improve on increasing the rewind
point. For higher sparsities, the naive baseline was unstable
in training as the modified VGG11 architecture does not
have BatchNorm layers (Ioffe & Szegedy, 2015); we omit
those results in the discussion for a fair comparison. Detailed
results are presented in Table 9 in Appendix A.4.

ResNet50/ImageNet. We also validated our hypothesis
on the ILSVRC 2012 (ImageNet) dataset, which consists of
1.28 million images across 1,000 classes (Deng et al., 2009).
We used the ResNet50 model to evaluate the performance
of the permuted mask at different sparsity levels. As

observed in Figure 7, the permuted solution outperforms
the naive solution across all sparsity levels, showing that our
hypothesis holds true on large-scale datasets as well. While
the permuted solution performs better than the naive solution,
there is still a significant gap between LTH and the permuted
solution in the case of the ImageNet dataset as compared to
the CIFAR-10/100 dataset. This could be due to permutation
matching not being accurate enough, as only a small subset
of the training dataset was used for activation matching. This
can also be visualized in terms of the loss barrier in Figure 3c
between the permuted modelA and modelB; the loss barrier
after permutation is more prominent compared to the CIFAR
dataset (Figures 3a and 3b). Thus, the permutation mapping
ω cannot match the models perfectly in the case of ImageNet
since the permutation matching algorithm uses a greedy
search algorithm to find the permutation mapping. However,
given a better mapping, it may be possible to further improve
the performance of the permuted solution as discussed
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plateaus and does not improve on increasing the rewind
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plateaus and does not improve on increasing the rewind
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of the training dataset was used for activation matching. This
can also be visualized in terms of the loss barrier in Figure 3c
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after permutation is more prominent compared to the CIFAR
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since the permutation matching algorithm uses a greedy
search algorithm to find the permutation mapping. However,
given a better mapping, it may be possible to further improve
the performance of the permuted solution as discussed
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the accuracy of LTH, while the naive solution significantly
plateaus and does not improve on increasing the rewind
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of the permuted mask at different sparsity levels. As

observed in Figure 7, the permuted solution outperforms
the naive solution across all sparsity levels, showing that our
hypothesis holds true on large-scale datasets as well. While
the permuted solution performs better than the naive solution,
there is still a significant gap between LTH and the permuted
solution in the case of the ImageNet dataset as compared to
the CIFAR-10/100 dataset. This could be due to permutation
matching not being accurate enough, as only a small subset
of the training dataset was used for activation matching. This
can also be visualized in terms of the loss barrier in Figure 3c
between the permuted modelA and modelB; the loss barrier
after permutation is more prominent compared to the CIFAR
dataset (Figures 3a and 3b). Thus, the permutation mapping
ω cannot match the models perfectly in the case of ImageNet
since the permutation matching algorithm uses a greedy
search algorithm to find the permutation mapping. However,
given a better mapping, it may be possible to further improve
the performance of the permuted solution as discussed
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however for a higher sparsity level (90%), the permuted
solution significantly outperforms the naive solution as
shown in Figure 8b. For the VGG11 model, on increasing
the rewind point, the permuted solution closely matches
the accuracy of LTH, while the naive solution significantly
plateaus and does not improve on increasing the rewind
point. For higher sparsities, the naive baseline was unstable
in training as the modified VGG11 architecture does not
have BatchNorm layers (Ioffe & Szegedy, 2015); we omit
those results in the discussion for a fair comparison. Detailed
results are presented in Table 9 in Appendix A.4.
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on the ILSVRC 2012 (ImageNet) dataset, which consists of
1.28 million images across 1,000 classes (Deng et al., 2009).
We used the ResNet50 model to evaluate the performance
of the permuted mask at different sparsity levels. As

observed in Figure 7, the permuted solution outperforms
the naive solution across all sparsity levels, showing that our
hypothesis holds true on large-scale datasets as well. While
the permuted solution performs better than the naive solution,
there is still a significant gap between LTH and the permuted
solution in the case of the ImageNet dataset as compared to
the CIFAR-10/100 dataset. This could be due to permutation
matching not being accurate enough, as only a small subset
of the training dataset was used for activation matching. This
can also be visualized in terms of the loss barrier in Figure 3c
between the permuted modelA and modelB; the loss barrier
after permutation is more prominent compared to the CIFAR
dataset (Figures 3a and 3b). Thus, the permutation mapping
ω cannot match the models perfectly in the case of ImageNet
since the permutation matching algorithm uses a greedy
search algorithm to find the permutation mapping. However,
given a better mapping, it may be possible to further improve
the performance of the permuted solution as discussed
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between the permuted and the naive baseline is not large,
however for a higher sparsity level (90%), the permuted
solution significantly outperforms the naive solution as
shown in Figure 8b. For the VGG11 model, on increasing
the rewind point, the permuted solution closely matches
the accuracy of LTH, while the naive solution significantly
plateaus and does not improve on increasing the rewind
point. For higher sparsities, the naive baseline was unstable
in training as the modified VGG11 architecture does not
have BatchNorm layers (Ioffe & Szegedy, 2015); we omit
those results in the discussion for a fair comparison. Detailed
results are presented in Table 9 in Appendix A.4.

ResNet50/ImageNet. We also validated our hypothesis
on the ILSVRC 2012 (ImageNet) dataset, which consists of
1.28 million images across 1,000 classes (Deng et al., 2009).
We used the ResNet50 model to evaluate the performance
of the permuted mask at different sparsity levels. As

observed in Figure 7, the permuted solution outperforms
the naive solution across all sparsity levels, showing that our
hypothesis holds true on large-scale datasets as well. While
the permuted solution performs better than the naive solution,
there is still a significant gap between LTH and the permuted
solution in the case of the ImageNet dataset as compared to
the CIFAR-10/100 dataset. This could be due to permutation
matching not being accurate enough, as only a small subset
of the training dataset was used for activation matching. This
can also be visualized in terms of the loss barrier in Figure 3c
between the permuted modelA and modelB; the loss barrier
after permutation is more prominent compared to the CIFAR
dataset (Figures 3a and 3b). Thus, the permutation mapping
ω cannot match the models perfectly in the case of ImageNet
since the permutation matching algorithm uses a greedy
search algorithm to find the permutation mapping. However,
given a better mapping, it may be possible to further improve
the performance of the permuted solution as discussed
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between the permuted and the naive baseline is not large,
however for a higher sparsity level (90%), the permuted
solution significantly outperforms the naive solution as
shown in Figure 8b. For the VGG11 model, on increasing
the rewind point, the permuted solution closely matches
the accuracy of LTH, while the naive solution significantly
plateaus and does not improve on increasing the rewind
point. For higher sparsities, the naive baseline was unstable
in training as the modified VGG11 architecture does not
have BatchNorm layers (Ioffe & Szegedy, 2015); we omit
those results in the discussion for a fair comparison. Detailed
results are presented in Table 9 in Appendix A.4.
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on the ILSVRC 2012 (ImageNet) dataset, which consists of
1.28 million images across 1,000 classes (Deng et al., 2009).
We used the ResNet50 model to evaluate the performance
of the permuted mask at different sparsity levels. As

observed in Figure 7, the permuted solution outperforms
the naive solution across all sparsity levels, showing that our
hypothesis holds true on large-scale datasets as well. While
the permuted solution performs better than the naive solution,
there is still a significant gap between LTH and the permuted
solution in the case of the ImageNet dataset as compared to
the CIFAR-10/100 dataset. This could be due to permutation
matching not being accurate enough, as only a small subset
of the training dataset was used for activation matching. This
can also be visualized in terms of the loss barrier in Figure 3c
between the permuted modelA and modelB; the loss barrier
after permutation is more prominent compared to the CIFAR
dataset (Figures 3a and 3b). Thus, the permutation mapping
ω cannot match the models perfectly in the case of ImageNet
since the permutation matching algorithm uses a greedy
search algorithm to find the permutation mapping. However,
given a better mapping, it may be possible to further improve
the performance of the permuted solution as discussed
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solution significantly outperforms the naive solution as
shown in Figure 8b. For the VGG11 model, on increasing
the rewind point, the permuted solution closely matches
the accuracy of LTH, while the naive solution significantly
plateaus and does not improve on increasing the rewind
point. For higher sparsities, the naive baseline was unstable
in training as the modified VGG11 architecture does not
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We used the ResNet50 model to evaluate the performance
of the permuted mask at different sparsity levels. As

observed in Figure 7, the permuted solution outperforms
the naive solution across all sparsity levels, showing that our
hypothesis holds true on large-scale datasets as well. While
the permuted solution performs better than the naive solution,
there is still a significant gap between LTH and the permuted
solution in the case of the ImageNet dataset as compared to
the CIFAR-10/100 dataset. This could be due to permutation
matching not being accurate enough, as only a small subset
of the training dataset was used for activation matching. This
can also be visualized in terms of the loss barrier in Figure 3c
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after permutation is more prominent compared to the CIFAR
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between the permuted and the naive baseline is not large,
however for a higher sparsity level (90%), the permuted
solution significantly outperforms the naive solution as
shown in Figure 8b. For the VGG11 model, on increasing
the rewind point, the permuted solution closely matches
the accuracy of LTH, while the naive solution significantly
plateaus and does not improve on increasing the rewind
point. For higher sparsities, the naive baseline was unstable
in training as the modified VGG11 architecture does not
have BatchNorm layers (Ioffe & Szegedy, 2015); we omit
those results in the discussion for a fair comparison. Detailed
results are presented in Table 9 in Appendix A.4.

ResNet50/ImageNet. We also validated our hypothesis
on the ILSVRC 2012 (ImageNet) dataset, which consists of
1.28 million images across 1,000 classes (Deng et al., 2009).
We used the ResNet50 model to evaluate the performance
of the permuted mask at different sparsity levels. As

observed in Figure 7, the permuted solution outperforms
the naive solution across all sparsity levels, showing that our
hypothesis holds true on large-scale datasets as well. While
the permuted solution performs better than the naive solution,
there is still a significant gap between LTH and the permuted
solution in the case of the ImageNet dataset as compared to
the CIFAR-10/100 dataset. This could be due to permutation
matching not being accurate enough, as only a small subset
of the training dataset was used for activation matching. This
can also be visualized in terms of the loss barrier in Figure 3c
between the permuted modelA and modelB; the loss barrier
after permutation is more prominent compared to the CIFAR
dataset (Figures 3a and 3b). Thus, the permutation mapping
ω cannot match the models perfectly in the case of ImageNet
since the permutation matching algorithm uses a greedy
search algorithm to find the permutation mapping. However,
given a better mapping, it may be possible to further improve
the performance of the permuted solution as discussed
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between the permuted and the naive baseline is not large,
however for a higher sparsity level (90%), the permuted
solution significantly outperforms the naive solution as
shown in Figure 8b. For the VGG11 model, on increasing
the rewind point, the permuted solution closely matches
the accuracy of LTH, while the naive solution significantly
plateaus and does not improve on increasing the rewind
point. For higher sparsities, the naive baseline was unstable
in training as the modified VGG11 architecture does not
have BatchNorm layers (Ioffe & Szegedy, 2015); we omit
those results in the discussion for a fair comparison. Detailed
results are presented in Table 9 in Appendix A.4.

ResNet50/ImageNet. We also validated our hypothesis
on the ILSVRC 2012 (ImageNet) dataset, which consists of
1.28 million images across 1,000 classes (Deng et al., 2009).
We used the ResNet50 model to evaluate the performance
of the permuted mask at different sparsity levels. As

observed in Figure 7, the permuted solution outperforms
the naive solution across all sparsity levels, showing that our
hypothesis holds true on large-scale datasets as well. While
the permuted solution performs better than the naive solution,
there is still a significant gap between LTH and the permuted
solution in the case of the ImageNet dataset as compared to
the CIFAR-10/100 dataset. This could be due to permutation
matching not being accurate enough, as only a small subset
of the training dataset was used for activation matching. This
can also be visualized in terms of the loss barrier in Figure 3c
between the permuted modelA and modelB; the loss barrier
after permutation is more prominent compared to the CIFAR
dataset (Figures 3a and 3b). Thus, the permutation mapping
ω cannot match the models perfectly in the case of ImageNet
since the permutation matching algorithm uses a greedy
search algorithm to find the permutation mapping. However,
given a better mapping, it may be possible to further improve
the performance of the permuted solution as discussed
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however for a higher sparsity level (90%), the permuted
solution significantly outperforms the naive solution as
shown in Figure 8b. For the VGG11 model, on increasing
the rewind point, the permuted solution closely matches
the accuracy of LTH, while the naive solution significantly
plateaus and does not improve on increasing the rewind
point. For higher sparsities, the naive baseline was unstable
in training as the modified VGG11 architecture does not
have BatchNorm layers (Ioffe & Szegedy, 2015); we omit
those results in the discussion for a fair comparison. Detailed
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on the ILSVRC 2012 (ImageNet) dataset, which consists of
1.28 million images across 1,000 classes (Deng et al., 2009).
We used the ResNet50 model to evaluate the performance
of the permuted mask at different sparsity levels. As

observed in Figure 7, the permuted solution outperforms
the naive solution across all sparsity levels, showing that our
hypothesis holds true on large-scale datasets as well. While
the permuted solution performs better than the naive solution,
there is still a significant gap between LTH and the permuted
solution in the case of the ImageNet dataset as compared to
the CIFAR-10/100 dataset. This could be due to permutation
matching not being accurate enough, as only a small subset
of the training dataset was used for activation matching. This
can also be visualized in terms of the loss barrier in Figure 3c
between the permuted modelA and modelB; the loss barrier
after permutation is more prominent compared to the CIFAR
dataset (Figures 3a and 3b). Thus, the permutation mapping
ω cannot match the models perfectly in the case of ImageNet
since the permutation matching algorithm uses a greedy
search algorithm to find the permutation mapping. However,
given a better mapping, it may be possible to further improve
the performance of the permuted solution as discussed
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Figure 7. ResNet50→{1}/ImageNet. Top-5 test accuracy vs.
rewinds points of sparse network solutions at various sparsity levels.
We observe the permuted solution consistently performing better
than the naive solution for all sparsities. The dashed (- -) line shows
the dense model accuracy.

explore a restricted solution space. Therefore, in practice, per-
mutation matching does not perfectly align two models. How-
ever, it has been observed that for wider models, the algorithm
can more closely align two models (Ainsworth et al., 2023;
Sharma et al., 2024). To understand how the performance of
the permuted model is affected by the approximation error
of the matching algorithm, we evaluated the LMC and the
accuracy of the permuted solution on ResNet20 models with
varying layer widths. As shown in Figure 3, on increasing the
layer width, the loss barrier of the interpolated network re-
duces, showing that permutation mapping becomes more ac-
curate and aligns two models better. Also, it can be observed
in Figures 5 and 6 that the permuted solution becomes close
to the LTH solution on increasing the model width, showing
that as the permutation matching becomes more accurate, the
gap between the LTH and the permuted solution reduces.

5. Conclusion
In this work, we demonstrate new insights into sparse
training from random initialization and the Lottery Ticket
Hypothesis (LTH) by leveraging weight symmetry in Deep

Table 1. Ensemble Diversity Metrics for CIFAR-10/CIFAR-100.
Although the mean test accuracy of LTH is higher, the ensemble of
permuted models achieves better test accuracy due to better func-
tional diversity of permuted models. Here we compare several
measurements of function space similarity between the models in-
cluding disagreement, which measures prediction differences (Fort
et al., 2020), and Kullback–Leibler (KL)/Jenson-Shannon (JS) diver-
gence, which quantify how much the output distributions of different
models differ (Evci et al., 2022). As shown, the permuted masks
achieve similar diversity as computational expensive IMP solutions,
also resulting in ensembles with a similar increase in generalization.
Mask Test Accuracy

(%)
Ensemble
Acc. (%)

Disagree-
ment

KL JS

ResNet20→{1}/CIFAR-10

none (dense) 92.76±0.106 - - - -
IMP 91.09±0.041 93.25 0.093 0.352 0.130

LTH 91.15±0.163 91.43 0.035 0.038 0.011
permuted 89.38±0.170 91.75 0.107 0.273 0.091
naive 88.68±0.205 91.07 0.113 0.271 0.089

ResNet20→{4}/CIFAR-100

none (dense) 78.37± 0.059 - - - -
IMP 74.46± 0.321 79.27 0.259 1.005 0.372

LTH 75.35± 0.204 75.99 0.117 0.134 0.038
permuted 72.48± 0.356 77.85 0.278 0.918 0.327
naive 71.05± 0.366 76.15 0.290 0.970 0.348

(a) sparsity = 0.80 (b) sparsity = 0.90

Figure 8. VGG11→{1}/CIFAR-10. Test accuracy of sparse
solutions at increasing rewind points for different sparsity levels.
The dashed (- -) line shows the dense model accuracy. In Figure 8b,
the permuted solution closely matches the LTH solution. However,
beyond a certain rewind point, i.e. for k↑ 20 the performance of
the naive solution plateaus. Resulting in a more noticeable gap
between the permuted and naive solutions compared to Figure 8a.

Neural Networks (DNNs). Our empirical findings across
various models and datasets support the hypothesis that mis-
alignment between the mask and loss basin prevents effective
use of LTH masks with new initialization. Although finding
a permutation to align dense models is computationally
expensive, the goal of our work is to develop insights into the
working of LTH and how the sparse mask can be reused, not
to improve the efficiency of LTH. We hope that our work will
spur future work in this direction and will be useful to the
research community working in the realm of sparse training.
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rewinds points of sparse network solutions at various sparsity levels.
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than the naive solution for all sparsities. The dashed (- -) line shows
the dense model accuracy.

explore a restricted solution space. Therefore, in practice, per-
mutation matching does not perfectly align two models. How-
ever, it has been observed that for wider models, the algorithm
can more closely align two models (Ainsworth et al., 2023;
Sharma et al., 2024). To understand how the performance of
the permuted model is affected by the approximation error
of the matching algorithm, we evaluated the LMC and the
accuracy of the permuted solution on ResNet20 models with
varying layer widths. As shown in Figure 3, on increasing the
layer width, the loss barrier of the interpolated network re-
duces, showing that permutation mapping becomes more ac-
curate and aligns two models better. Also, it can be observed
in Figures 5 and 6 that the permuted solution becomes close
to the LTH solution on increasing the model width, showing
that as the permutation matching becomes more accurate, the
gap between the LTH and the permuted solution reduces.

5. Conclusion
In this work, we demonstrate new insights into sparse
training from random initialization and the Lottery Ticket
Hypothesis (LTH) by leveraging weight symmetry in Deep

Table 1. Ensemble Diversity Metrics for CIFAR-10/CIFAR-100.
Although the mean test accuracy of LTH is higher, the ensemble of
permuted models achieves better test accuracy due to better func-
tional diversity of permuted models. Here we compare several
measurements of function space similarity between the models in-
cluding disagreement, which measures prediction differences (Fort
et al., 2020), and Kullback–Leibler (KL)/Jenson-Shannon (JS) diver-
gence, which quantify how much the output distributions of different
models differ (Evci et al., 2022). As shown, the permuted masks
achieve similar diversity as computational expensive IMP solutions,
also resulting in ensembles with a similar increase in generalization.
Mask Test Accuracy
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Ensemble
Acc. (%)

Disagree-
ment

KL JS

ResNet20→{1}/CIFAR-10

none (dense) 92.76±0.106 - - - -
IMP 91.09±0.041 93.25 0.093 0.352 0.130

LTH 91.15±0.163 91.43 0.035 0.038 0.011
permuted 89.38±0.170 91.75 0.107 0.273 0.091
naive 88.68±0.205 91.07 0.113 0.271 0.089

ResNet20→{4}/CIFAR-100

none (dense) 78.37± 0.059 - - - -
IMP 74.46± 0.321 79.27 0.259 1.005 0.372

LTH 75.35± 0.204 75.99 0.117 0.134 0.038
permuted 72.48± 0.356 77.85 0.278 0.918 0.327
naive 71.05± 0.366 76.15 0.290 0.970 0.348
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Figure 8. VGG11→{1}/CIFAR-10. Test accuracy of sparse
solutions at increasing rewind points for different sparsity levels.
The dashed (- -) line shows the dense model accuracy. In Figure 8b,
the permuted solution closely matches the LTH solution. However,
beyond a certain rewind point, i.e. for k↑ 20 the performance of
the naive solution plateaus. Resulting in a more noticeable gap
between the permuted and naive solutions compared to Figure 8a.

Neural Networks (DNNs). Our empirical findings across
various models and datasets support the hypothesis that mis-
alignment between the mask and loss basin prevents effective
use of LTH masks with new initialization. Although finding
a permutation to align dense models is computationally
expensive, the goal of our work is to develop insights into the
working of LTH and how the sparse mask can be reused, not
to improve the efficiency of LTH. We hope that our work will
spur future work in this direction and will be useful to the
research community working in the realm of sparse training.
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(a) sparsity = 0.80 (b) sparsity = 0.90 (c) sparsity = 0.95 (d) sparsity = 0.97

Figure 5. ResNet20→{w}/CIFAR-10.Test accuracy of sparse network solutions vs. increasing rewind points for different sparsity levels
and widths, w. The dashed (- -) line shows the dense model accuracy. The effect of the rewind point on the test accuracy for different
sparsities is shown. As the width increases, the gap between training from a random initialization with the permuted mask and the LTH/dense
baseline (dashed line) decreases, unlike training with the non-permuted mask (naive), showing a model trained with the permuted mask
generalizes better than naive.

between the permuted and the naive baseline is not large,
however for a higher sparsity level (90%), the permuted
solution significantly outperforms the naive solution as
shown in Figure 8b. For the VGG11 model, on increasing
the rewind point, the permuted solution closely matches
the accuracy of LTH, while the naive solution significantly
plateaus and does not improve on increasing the rewind
point. For higher sparsities, the naive baseline was unstable
in training as the modified VGG11 architecture does not
have BatchNorm layers (Ioffe & Szegedy, 2015); we omit
those results in the discussion for a fair comparison. Detailed
results are presented in Table 9 in Appendix A.4.

ResNet50/ImageNet. We also validated our hypothesis
on the ILSVRC 2012 (ImageNet) dataset, which consists of
1.28 million images across 1,000 classes (Deng et al., 2009).
We used the ResNet50 model to evaluate the performance
of the permuted mask at different sparsity levels. As

observed in Figure 7, the permuted solution outperforms
the naive solution across all sparsity levels, showing that our
hypothesis holds true on large-scale datasets as well. While
the permuted solution performs better than the naive solution,
there is still a significant gap between LTH and the permuted
solution in the case of the ImageNet dataset as compared to
the CIFAR-10/100 dataset. This could be due to permutation
matching not being accurate enough, as only a small subset
of the training dataset was used for activation matching. This
can also be visualized in terms of the loss barrier in Figure 3c
between the permuted modelA and modelB; the loss barrier
after permutation is more prominent compared to the CIFAR
dataset (Figures 3a and 3b). Thus, the permutation mapping
ω cannot match the models perfectly in the case of ImageNet
since the permutation matching algorithm uses a greedy
search algorithm to find the permutation mapping. However,
given a better mapping, it may be possible to further improve
the performance of the permuted solution as discussed
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Figure 6. ResNet20→{w}/CIFAR-100. Test accuracy of sparse network solutions vs. increasing rewind points for different sparsity levels
and widths, w. The dashed (- -) line shows the dense model accuracy. The effect of the rewind points on the test accuracy for different
sparsities is shown. As the width increases, the gap between training from a random initialization with the permuted mask and the LTH/dense
baseline (dashed line) decreases, unlike training with the non-permuted mask (naive), showing model trained with the permuted model
generalizes better than naive.

in Section 4.3. Detailed results are presented in Table 10
in Appendix A.4. As demonstrated in Table 10, the permuted
solution outperforms the naive approach by nearly 2% at
higher sparsity levels.

4.2. Diversity Analysis of Permuted Models.

A limitation of LTH is that it consistently converges to very
similar solutions to the original pruned model (Evci et al.,
2022). Evci et al. (2022) speculate this occurs because the
LTH is always trained with the same initialization/rewind
point, and effectively relearns the same solution. Our
hypothesis is that permuted LTH masks, trained with distinct
initialization/rewind points and subject to approximation
errors in permutation matching, may learn more diverse
functions than the LTH itself. We analyze the diversity of
sparse models trained at 90% sparsity, with either a permuted

mask (permuted), the LTH mask (naive), LTH mask & init.
and the original pruned solution (IMP) on which the LTH
is based. We follow the same analysis as Evci et al. (2022)
and compare the diversity of the resulting models, over five
different training runs, using disagreement score, KL diver-
gence and JS divergence. We also compare with an ensemble
of five models trained independently with different random
seeds. As shown in Table 1, an ensemble of permuted models
shows higher diversity across all the metrics than the LTH,
showing that the permuted models learn a more diverse set
of solutions. We provide additional details in Appendix C.

4.3. Effect of Model Width Multiplier.

Permutation matching is an NP-hard problem; the activation
matching algorithm proposed by Ainsworth et al. (2023) does
not find the global optimum; rather, it uses a greedy search to
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(a) ResNet20→{w}/CIFAR-10 (b) ResNet20→{w}/CIFAR-100 (c) ResNet50→{w}/ImageNet

Figure 3. Larger width exhibits better LMC. Plots showing linear interpolation between ω(wt=T
A ) and wt=T

B where ω was obtained
through activation matching between two dense models for varying widths,w. As the width of the model increases, the permutation matching
algorithm gets more accurate, thereby reducing the loss barrier (i.e., better LMC), which is evaluated on the test set. This shows that the permu-
tation matching can find a better mapping, ω, for wider models, explaining why the permuted mask works better in the case of wider models.

(a) ResNet20→{4}/CIFAR-10 (b) 0–1 loss landscape

Figure 4. LTH solution remains in the same linearly connected
mode as the dense solution. In Figure 4a we plot the error barrier
between the dense solution and the sparse solution (y-axis) vs the
IMP iteration corresponding to the sparse solution (x-axis), for
90% sparsity. We observe that after fixing variance collapse via the
REPAIR method, the error barrier between the dense and the sparse
solutions remains small, thus showing that LTH solution remains in
the same linearly connected mode as the dense solution. In Figure 4b
we visualize the 0–1 loss landscape of ResNet20→{4}/CIFAR-10.
The figure is generated by evaluating the 0–1 loss spanned by three
models in the figure. We show that, modulo permutations, reusing
the permuted mask leads to convergence in the same mode as the
original model, i.e. the LTH solution. Hence, there is a small loss
barrier between the permuted and LTH solutions, demonstrating
they are within the same linearly connected mode.

4. Results
To validate our hypothesis, we trained ResNet20 (He
et al., 2016) and VGG11 (Simonyan & Zisserman, 2015)
models on the CIFAR-10/100 datasets (Krizhevsky, 2009)
(details in Appendix A.1) across different levels of spar-
sity (S=0.80,0.90,0.95,0.97). We used ResNet20 with vary-
ing widths (w=1,4,8,16) to study the effect of increasing
width on the permutation matching and, thereby, the perfor-
mance of the permuted sparse model. We also demonstrate
our hypothesis on the large-scale ImageNet dataset (Deng
et al., 2009) using ResNet50, showing the efficacy of our
method across different models and datasets of varying sizes.

4.1. Experimental Results.

ResNet20/CIFAR-10 & CIFAR-100. We trained
ResNet20 on the CIFAR-10/100 datasets. As shown in Fig-
ures 5 and 6, the permuted solution outperforms the naive
baseline across all model widths and rewind points. Since it
is more difficult to train models with higher sparsity, the gap
between naive and permuted solutions increases as sparsity
increases, as shown in Figure 5d for width multiplier 1,4,8,
and 16. It can also be observed that at higher sparsity increas-
ing the rewind point improves both the LTH and permuted so-
lution but not the naive solution. The improved performance
of the permuted solution over naive supports our hypothesis
and shows that misalignment of the LTH mask and loss basin
corresponding to the new random initialization could explain
why LTH masks do not transfer to different initializations. We
also show accuracy vs. sparsity plots for k={10,25,50,100}
(details in Appendix A.5); as sparsity increases, the gap
between permuted and naive solution increases for all rewind
points. As illustrated in figure Figure 5, neither the LTH
nor the permuted solution performs effectively with random
initialization (k=0) but improves on increasing the rewind
point up to a certain point, beyond which it plateaus. Detailed
results are presented in Tables 5 to 8 in Appendix A.4.

We also validated our hypothesis on CIFAR-100 using
ResNet20 with varying widths. As shown in Figure 6,
the permuted solution consistently outperforms the naive
solution, showing that our hypothesis holds true across
different models and datasets. Similar to the CIFAR-10
dataset, as we increase the model width multiplier, the gap
between the permuted and naive solution increases, showing
the efficacy of our method. Detailed results are presented
in Tables 11 to 14 in Appendix A.4.

VGG11/CIFAR-10. We utilize the modified VGG11
architecture implemented by Jordan et al. (2023) trained
on CIFAR-10 (details in Appendix A.1). We observe
that for a moderate sparsity (80%) in Figure 8a, the gap
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Analysis of 0-1 Loss Basin of Solutions
● If our permutation matching is only 

approximate, are solutions in same basin?

● Here we analyze the 0-1 loss of three 
solutions, plotting their planar cross-section
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○ Soln. B masked by permuted mask: 
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● In same basin, but different modes
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Figure 4. LTH solution remains in the same linearly connected
mode as the dense solution. In Figure 4a we plot the error barrier
between the dense solution and the sparse solution (y-axis) vs the
IMP iteration corresponding to the sparse solution (x-axis), for
90% sparsity. We observe that after fixing variance collapse via the
REPAIR method, the error barrier between the dense and the sparse
solutions remains small, thus showing that LTH solution remains in
the same linearly connected mode as the dense solution. In Figure 4b
we visualize the 0–1 loss landscape of ResNet20→{4}/CIFAR-10.
The figure is generated by evaluating the 0–1 loss spanned by three
models in the figure. We show that, modulo permutations, reusing
the permuted mask leads to convergence in the same mode as the
original model, i.e. the LTH solution. Hence, there is a small loss
barrier between the permuted and LTH solutions, demonstrating
they are within the same linearly connected mode.

4. Results
To validate our hypothesis, we trained ResNet20 (He
et al., 2016) and VGG11 (Simonyan & Zisserman, 2015)
models on the CIFAR-10/100 datasets (Krizhevsky, 2009)
(details in Appendix A.1) across different levels of spar-
sity (S=0.80,0.90,0.95,0.97). We used ResNet20 with vary-
ing widths (w=1,4,8,16) to study the effect of increasing
width on the permutation matching and, thereby, the perfor-
mance of the permuted sparse model. We also demonstrate
our hypothesis on the large-scale ImageNet dataset (Deng
et al., 2009) using ResNet50, showing the efficacy of our
method across different models and datasets of varying sizes.

4.1. Experimental Results.

ResNet20/CIFAR-10 & CIFAR-100. We trained
ResNet20 on the CIFAR-10/100 datasets. As shown in Fig-
ures 5 and 6, the permuted solution outperforms the naive
baseline across all model widths and rewind points. Since it
is more difficult to train models with higher sparsity, the gap
between naive and permuted solutions increases as sparsity
increases, as shown in Figure 5d for width multiplier 1,4,8,
and 16. It can also be observed that at higher sparsity increas-
ing the rewind point improves both the LTH and permuted so-
lution but not the naive solution. The improved performance
of the permuted solution over naive supports our hypothesis
and shows that misalignment of the LTH mask and loss basin
corresponding to the new random initialization could explain
why LTH masks do not transfer to different initializations. We
also show accuracy vs. sparsity plots for k={10,25,50,100}
(details in Appendix A.5); as sparsity increases, the gap
between permuted and naive solution increases for all rewind
points. As illustrated in figure Figure 5, neither the LTH
nor the permuted solution performs effectively with random
initialization (k=0) but improves on increasing the rewind
point up to a certain point, beyond which it plateaus. Detailed
results are presented in Tables 5 to 8 in Appendix A.4.

We also validated our hypothesis on CIFAR-100 using
ResNet20 with varying widths. As shown in Figure 6,
the permuted solution consistently outperforms the naive
solution, showing that our hypothesis holds true across
different models and datasets. Similar to the CIFAR-10
dataset, as we increase the model width multiplier, the gap
between the permuted and naive solution increases, showing
the efficacy of our method. Detailed results are presented
in Tables 11 to 14 in Appendix A.4.

VGG11/CIFAR-10. We utilize the modified VGG11
architecture implemented by Jordan et al. (2023) trained
on CIFAR-10 (details in Appendix A.1). We observe
that for a moderate sparsity (80%) in Figure 8a, the gap
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Functional Diversity
● Our previous work showed that the LTH 

relearns a highly similar solution

● Unlike LTH, we can reuse the LTH mask 
with different random initializations

● We do see improved function diversity 
over LTH, comparable to dense!

● More computationally efficient way to 
improve diversity than iterative 
magnitude pruning alone
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Figure 7. ResNet50→{1}/ImageNet. Top-5 test accuracy vs.
rewinds points of sparse network solutions at various sparsity levels.
We observe the permuted solution consistently performing better
than the naive solution for all sparsities. The dashed (- -) line shows
the dense model accuracy.

explore a restricted solution space. Therefore, in practice, per-
mutation matching does not perfectly align two models. How-
ever, it has been observed that for wider models, the algorithm
can more closely align two models (Ainsworth et al., 2023;
Sharma et al., 2024). To understand how the performance of
the permuted model is affected by the approximation error
of the matching algorithm, we evaluated the LMC and the
accuracy of the permuted solution on ResNet20 models with
varying layer widths. As shown in Figure 3, on increasing the
layer width, the loss barrier of the interpolated network re-
duces, showing that permutation mapping becomes more ac-
curate and aligns two models better. Also, it can be observed
in Figures 5 and 6 that the permuted solution becomes close
to the LTH solution on increasing the model width, showing
that as the permutation matching becomes more accurate, the
gap between the LTH and the permuted solution reduces.

5. Conclusion
In this work, we demonstrate new insights into sparse
training from random initialization and the Lottery Ticket
Hypothesis (LTH) by leveraging weight symmetry in Deep

Table 1. Ensemble Diversity Metrics for CIFAR-10/CIFAR-100.
Although the mean test accuracy of LTH is higher, the ensemble of
permuted models achieves better test accuracy due to better func-
tional diversity of permuted models. Here we compare several
measurements of function space similarity between the models in-
cluding disagreement, which measures prediction differences (Fort
et al., 2020), and Kullback–Leibler (KL)/Jenson-Shannon (JS) diver-
gence, which quantify how much the output distributions of different
models differ (Evci et al., 2022). As shown, the permuted masks
achieve similar diversity as computational expensive IMP solutions,
also resulting in ensembles with a similar increase in generalization.
Mask Test Accuracy

(%)
Ensemble
Acc. (%)

Disagree-
ment

KL JS

ResNet20→{1}/CIFAR-10

none (dense) 92.76±0.106 - - - -
IMP 91.09±0.041 93.25 0.093 0.352 0.130

LTH 91.15±0.163 91.43 0.035 0.038 0.011
permuted 89.38±0.170 91.75 0.107 0.273 0.091
naive 88.68±0.205 91.07 0.113 0.271 0.089

ResNet20→{4}/CIFAR-100

none (dense) 78.37± 0.059 - - - -
IMP 74.46± 0.321 79.27 0.259 1.005 0.372

LTH 75.35± 0.204 75.99 0.117 0.134 0.038
permuted 72.48± 0.356 77.85 0.278 0.918 0.327
naive 71.05± 0.366 76.15 0.290 0.970 0.348

(a) sparsity = 0.80 (b) sparsity = 0.90

Figure 8. VGG11→{1}/CIFAR-10. Test accuracy of sparse
solutions at increasing rewind points for different sparsity levels.
The dashed (- -) line shows the dense model accuracy. In Figure 8b,
the permuted solution closely matches the LTH solution. However,
beyond a certain rewind point, i.e. for k↑ 20 the performance of
the naive solution plateaus. Resulting in a more noticeable gap
between the permuted and naive solutions compared to Figure 8a.

Neural Networks (DNNs). Our empirical findings across
various models and datasets support the hypothesis that mis-
alignment between the mask and loss basin prevents effective
use of LTH masks with new initialization. Although finding
a permutation to align dense models is computationally
expensive, the goal of our work is to develop insights into the
working of LTH and how the sparse mask can be reused, not
to improve the efficiency of LTH. We hope that our work will
spur future work in this direction and will be useful to the
research community working in the realm of sparse training.
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● The Lottery Ticket Hypothesis excited the community on the possibility of sparse 
training and sparse mask re-use, but LTH is limited to re-learning the same soln.

● We explain the sparse training problem: misalignment between a pruned mask 
and the loss basin of a new random initialization prevents effective re-use of 
sparse masks for training

● We show how to re-use a mask to find new solutions: 
● We can approximately permute an existing sparse mask for a new random 

initialization, although this is currently computationally expensive
● We found the functional diversity of sparse training solutions to be comparable to 

dense training when using permuted masks.

Conclusion



● Improving the efficiency and/or efficacy of permutation alignment would make 
the method we propose more practical

● Explaining and/or avoiding weight ”rewinding”, i.e. checkpoints in LTH/sparse 
training

○ Notably Dynamic Sparse Training (DST) methods do not need this, but learn masks

● We see high function diversity with our method of sparse training:

○ Can we efficiently create ensembles using permutations of sparse masks?

○ Could help align weight sparse experts in MoEs for merging
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Abstract

Knowledge Distillation is a commonly used Deep Neural Network (DNN) compression method,
which often maintains overall generalization performance. However, we show that even for
balanced image classification datasets, such as CIFAR-100, Tiny ImageNet and ImageNet,
as many as 41% of the classes are statistically significantly a!ected by distillation when
comparing class-wise accuracy (i.e. class bias) between a teacher/distilled student or distilled
student/non-distilled student model. Changes in class bias are not necessarily an undesirable
outcome when considered outside of the context of a model’s usage. Using two common
fairness metrics, Demographic Parity Di!erence (DPD) and Equalized Odds Di!erence (EOD)
on models trained with the CelebA, Trifeature, and HateXplain datasets, our results suggest
that increasing the distillation temperature improves the distilled student model’s fairness,
and the distilled student fairness can even surpass the fairness of the teacher model at high
temperatures. Additionally, we examine individual fairness, ensuring similar instances receive
similar predictions. Our results confirm that higher temperatures also improve the distilled
student model’s individual fairness. This study highlights the uneven e!ects of distillation
on certain classes and its potentially significant role in fairness, emphasizing that caution
is warranted when using distilled models for sensitive application domains.

1 Introduction

DNNs require significant computational resources, resulting in large overheads in compute, memory, and energy.
Decreasing this computational overhead is necessary for many real-world applications where these costs would oth-
erwise be prohibitive, or even make their application infeasible — e.g. the deployment of DNNs on mobile phones
or edge devices with limited resources (Chen et al., 2016; Cheng et al., 2018; Gupta and Agrawal, 2022; Menghani,
2023). To address this challenge, DNN model compression methods have been developed that reduce the size and
complexity of DNNs while maintaining their generalization performance (Cheng et al., 2017). One such widely
used model compression method is Knowledge Distillation (distillation) (Hinton et al., 2015). Distillation has
found extensive application in both industry and academia across various domains of artificial intelligence, encom-
passing areas such as Natural Language Processing (NLP) (Jiao et al., 2019; Fu et al., 2021; Liu et al., 2020), speech
recognition (Ng et al., 2018; Gao et al., 2019; Perez et al., 2020), and visual recognition (Yan et al., 2019; Dou et al.,
2020; Chawla et al., 2021), specifically image classification (Zhu et al., 2019; Chen et al., 2019; Gou et al., 2021).

Distillation involves transferring knowledge from a complex model with superior performance (referred to
as the teacher) to a simpler model (known as the student). In practice this allows the student model to achieve
comparable or even better generalization than the teacher model, while using far fewer parameters (Hinton
et al., 2015; Gou et al., 2021). Despite the widespread use of distillation, evaluation of the impact of distillation
since its proposal by (Hinton et al., 2015) has overwhelmingly focused almost exclusively on the impact it
has on generalization performance (Cho and Hariharan, 2019; Mirzadeh et al., 2020).
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● Neural Information Processing 
Systems (NeurIPS) 2024 in 
Vancouver

● 5 different works being 
presented by 6 CML students 
across main conference and 
workshops

Tuesday, December 10th, 2024

Muslims in ML (MusiML) Workshop
2:30-3:00 p.m. (Lightning Talk) *

4:30-5:00 p.m. (Internal Poster Session), 6:30-8:00 p.m (Joint Poster Session for Affinity Groups)

* A Closer Look at Sparse Training in Deep Reinforcement Learning. 
Muhammad Athar Ganaie, Vincent Michalski, Samira Ebrahimi Kahou, Yani Ioannou. 

This paper explores sparse training in DRL, highlighting methods to improve dynamic sparse training 
performance at high sparsity, underscoring the need for DRL-specific strategies.

Long-Tail Learning with Language Model Guided Curricula. 
Mohammed Adnan, Rahul Krishnan, Yani Ioannou.

Improving performance on long-tail classes by leveraging LLMs to build curricula.

Women in Machine Learning (WiML) Workshop
6:30 p.m - 8:00 p.m (Joint Poster Session for Affinity Groups)

Learning to Reweight Examples in Backdoor Defense. 
Yufan Feng, Benjamin Tan, Yani Ioannou.

We extend the online sample reweighting method from robust learning to the context of backdoor 
defense.

What’s Left After Distillation? How Knowledge Transfer Impacts Fairness and Bias.
Aida Mohammadshahi, Yani Ioannou. 

We explore the impact of knowledge distillation temperature on fairness for language and image 
classification models.

Friday, December 13th, 2024

Main Conference
4:30-7:30 p.m. (Poster Session)

Navigating Extremes: Dynamic Sparsity in Large Output Spaces. 
Nasibullah Nasibullah, Erik Schultheis, Mike Lasby, Yani Ioannou, Rohit Babbar.

Investigates Dynamic Sparse Training for large output spaces. Leveraging semi-structured sparsity, 
intermediate layers, and auxiliary loss, it enables end-to-end training with millions of labels.

Poster Location: East Exhibit Hall A-C #2004

Saturday, December 14th, 2024

UniReps: Unifying Representations in Neural Models
4:30-7:30 p.m. (Poster Session)

Winning Tickets from Random Initialization: Aligning Masks for Sparse Training. 
Rohan Jain, Mohammed Adnan, Ekansh Sharma, Yani Ioannou.

Lottery Tickets can’t be trained from random init. We show that permuting the mask to align with the 
new initialization’s optimization basin results in a mask that better approaches LTH generalization.

Calgary ML @ 
NeurIPS 2024

https://neurips.cc/virtual/2024/109144
https://neurips.cc/virtual/2024/109148
https://neurips.cc/virtual/2024/109148
https://neurips.cc/virtual/2024/109148
https://neurips.cc/virtual/2024/109029
https://neurips.cc/virtual/2024/109051
https://neurips.cc/virtual/2024/poster/95193
https://neurips.cc/virtual/2024/102627


● International Machine 
Learning Conference (ICML) 
2025 in Vancouver in July

● Five students from CML Lab 
presenting 6 different works 
across 6 workshops and the 
main conference 

Monday, July 14th, 2025

4th Muslims in ML (MusiML) Workshop
West Meeting Room 211-214, 3:00 - 4:00 p.m. (Poster Session)

Does Compression Exacerbate Large Language Models' Social Bias?
Muhammad Athar Ganaie · Mohammed Adnan · Arfa Raja · Shaina Raza · Yani Ioannou 

Women in Machine Learning (WiML) Symposium
West Meeting Room 211-214, 3:00 - 4:00 p.m. (Poster Session)

Backdooring VLMs via Concept-Driven Triggers 
Yufan Feng · Weimin Lyu · Yuxin Wang · Benjamin Tan · Yani Ioannou

Tuesday, July 15th, 2025

Main Conference
East Exhibition Hall A-B, 11:00 a.m. - 1:30 p.m. (Poster Session)

Sparse Training from Random Initialization: 
Aligning Lottery Ticket Masks using Weight Symmetry

Mohammed Adnan · Rohan Jain · Ekansh Sharma · Rahul G. Krishnan · Yani Ioannou
Poster Location: East Exhibition Hall A-B #E-2106

Friday, July 18th, 2025

3rd Workshop on High-dimensional Learning Dynamics (HiLD)
West Meeting Room 118-120, 4:45 - 5:30 p.m. (Poster Session)

Understanding Normalization Layers for Sparse Training
Mohammed Adnan · Ekansh Sharma · Rahul G. Krishnan · Yani Ioannou

Saturday, July 19th, 2025

3rd Workshop on Efficient Systems for Foundation Models (ES-FoMo III)
East Exhibition Hall A, 1:00 - 2:30 p.m (Poster Session)

SD2: Self-Distilled Sparse Drafters
Mike Lasby · Nish Sinnadurai · Valavan Manohararajah · Sean Lie · Yani Ioannou · Vithursan Thangarasa

Data in Generative Models Workshop: The Bad, the Ugly, and the Greats (DIG-BUGS)
West Ballroom A, 3:00 - 3:45 p.m (Poster Session)

Backdooring VLMs via Concept-Driven Triggers 
Yufan Feng · Weimin Lyu · Yuxin Wang · Benjamin Tan · Yani Ioannou

Workshop on Technical AI Governance
West Meeting Room 109-110, 3:00 - 4:00 p.m (Poster Session)

Exploring Functional Similarities of Backdoored Models
Yufan Feng · Benjamn Tan · Yani Ioannou

Calgary ML Lab @ 
ICML 2025

https://icml.cc/virtual/2025/50538
https://icml.cc/virtual/2025/48358
https://icml.cc/virtual/2025/48358
https://icml.cc/virtual/2025/48358
https://icml.cc/virtual/2025/47712
https://icml.cc/virtual/2025/51379
https://icml.cc/virtual/2025/51379
https://icml.cc/virtual/2025/51379
https://icml.cc/virtual/2025/51379
https://icml.cc/virtual/2025/51379
https://icml.cc/virtual/2025/51026
https://icml.cc/virtual/2025/51026
https://icml.cc/virtual/2025/51026
https://icml.cc/virtual/2025/48358

