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Why Sparse Neural Networks?

We will focus on weight sparsity, but there
are other forms of sparsity (e.g. activation)

Reducing the cost of NN training and
inference

Learning NN structure from data

Understanding & improving NN training




Motivation: Efficiency

® State of the art models are becoming
exponentially more expensive to train

Al Research is less accessible

Inference cost is increasingly
important, sparse training shows

promise in learning better masks for
inference than pruning

1e+26 °
[} v.

1e+25 - °.0’ *
_ °o o SO08
& 1e+24 - % o 2° ‘ [
%1e+23— .. o :‘. .. L ’.‘.'..‘ @ !
= ® ® ® ([ )
ol o8 iR
1S o [ J
St , e o ® 2 o0 &% ®

e [ ]

21er20 & o o 005%° o °
£ ° ¢ ®y % o o0 ° °
S 1e+19- ¢ o 0o L0 o ® °
(= o . . o ° ° @

1le+18- o P P

1e+17 - > _a - ®

@ Academia ( Industry @ Joint @
1e+16 T T T T T 1
2019 2020 2021 2022 2023 2024 2025

Publication Date

Training Cost (FLOPS) for State-of-the-Art ML Models
(data Epoch Al)

CM...

UNIVERSITY OF

CALGARY



Motivation: Learning NN Structure

In practice we rarely use fully-connected NNs
for learning representations (features)...

Instead, we must use our domain knowledge
to change the structure of the model

@® CNNs, Transformers, Graph NN, ...

These are technically sparse neural networks
also, but are hand-designed, not learned

Can we learn NN structure & inductive
biases from data?




Motivation: Understanding Learning

® Training NNs from random initialization is
unreasonably effective... but not always

® Much of the “deep learning” progress can be
attributed to improved NN training:

O Initialization, normalization, residual
connections, etc.

® Sparsity breaks NN training

® Understanding sparse training could improve
our fundamental understanding of training



Calgary ML Lab Research

What we have been doing:

® Using SOTA sparse training methods to accelerate
practical real-world problems, e.g.:

O | Dynamic Sparse Training with Structured Sparsity. Mike
Lasby, Anna Golubeva, Utku Evci, Mihai Nica, and Yani
loannou. In International Conference on Learning
Representations (ICLR), Vienna, Austria 2024.

O Navigating Extremes: Dynamic Sparsity in Large Output
Spaces. Nasib Ullah, Erik Schultheis, Mike Lasby, Yani
loannou, and Rohit Babbar. In 38th Annual Conference
Neural Information Processing Systems (NeurlPS) 2024,
Vancouver, BC, Canada 2024.




Published as a conference paper at ICLR 2024

DYNAMIC SPARSE TRAINING
WITH STRUCTURED SPARSITY

Mike Lasby', Anna Golubeva?3, Utku Evci*, Mihai Nica®°, Yani A. Ioannou'
!University of Calgary, “Massachusetts Institute of Technology, *TAIFI
4Google DeepMind, ®University of Guelph, ¢ Vector Institute for AT *

ABSTRACT

Dynamic Sparse Training (DST) methods achieve state-of-the-art results in sparse
neural network training, matching the generalization of dense models while
enabling sparse training and inference. Although the resulting models are highly
sparse and theoretically less computationally expensive, achieving speedups with
unstructured sparsity on real-world hardware is challenging. In this work, we
propose a sparse-to-sparse DST method, Structured RigL (SRigL), to learn a
variant of fine-grained structured N:M sparsity by imposing a constant fan-in
constraint. Using our empirical analysis of existing DST methods at high sparsity,
we additionally employ a neuron ablation method which enables SRigL to achieve
state-of-the-art sparse-to-sparse structured DST performance on a variety of Neural
Network (NN) architectures. Using a 90% sparse linear layer, we demonstrate a
real-world acceleration of 3.4 x/2.5x on CPU for online inference and 1.7x/13.0x
on GPU for inference with a batch size of 256 when compared to equivalent
dense/unstructured (CSR) sparse layers, respectively.

1 INTRODUCTION

Dynamic Sparse Training (DST) methods such as RigL. (Evci et al., 2021) are the state-of-the-art in
sparse training methods for Deep Neural Networks (DNNs). DST methods typically learn unstructured
masks resulting in 85-95% fewer weights than dense models, while maintaining dense-like general-
ization and typically outperforming masks found via pruning. Furthermore, sparse-to-sparse DST algo-
rithms are capable of employing sparsity both during training and inference, unlike pruning and dense-
to-sparse DST methods such as SR-STE (Zhou et al., 2021) which only exploit sparsity at inference time.

‘While models trained with DST methods are highly sparse and enable a large reduction in Floating
Point Operations (FLOPs) in theory, realizing these speedups on hardware is challenging when the
sparsity pattern is unstructured. Even considering recent advances in accelerating unstructured Sparse
Neural Networks (SNNs) (Gale et al., 2020; Elsen et al., 2020; Ji & Chen, 2022), structured sparsity
realizes much stronger acceleration on real-world hardware. On the other hand, structured sparse
pruning often removes salient weights, resulting in worse generalization than comparable unstructured
SNNs for the same sparsity level (Fig. 1a). Our work presents a best-of-both-worlds approach:
we exploit the DST framework to learn both a highly-sparse and structured representation while
maintaining generalization performance. In summary, our work makes the following contributions:
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Calgary ML Lab Research

What we have been doing:

® Understanding why sparse training is difficult

©)

Sparse Training from Random Initialization: Aligning
Lottery Ticket Masks using Weight Symmetry.
Mohammed Adnan, Rohan Jain, Ekansh Sharma, Rahul
Krishnan, and Yani loannou. In Proceedings of Forty-
second International Conference on Machine Learning
(ICML) 2025, Vancouver, BC, Canada.

Gradient Flow in Sparse Neural Networks and How
Lottery Tickets Win. Utku Evci, Yani A. loannou, Cem
Keskin, and Yann Dauphin. In Proceedings of the 36th
AAAI Conference on Artificial Intelligence (AAAI) 2022.
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Sparse Training from Random Initialization:
Aligning Lottery Ticket Masks using Weight Symmetry

Mohammed Adnan " '? Rohan Jain"' Ekansh Sharma3? Rahul G. Krishnan®? Yani Ioannou '

Abstract

The Lottery Ticket Hypothesis (LTH) suggests
there exists a sparse LTH mask and weights that
achieve the same generalization performance as
the dense model while using significantly fewer
parameters. However, finding a LTH solution is
computationally expensive, and a LTH’s sparsity
mask does not generalize to other random weight
initializations. Recent work has suggested that
neural networks trained from random initialization
find solutions within the same basin modulo per-
mutation, and proposes a method to align trained
models within the same loss basin. We hypothe-
size that misalignment of basins is the reason why
LTH masks do not generalize to new random ini-
tializations and propose permuting the LTH mask
to align with the new optimization basin when per-
forming sparse training from a different random
init. We empirically show a significant increase in
generalization when sparse training from random
initialization with the permuted mask as compared
to using the non-permuted LTH mask, on multiple
datasets (CIFAR-10/100 & ImageNet) and models
(VGG11 & ResNet20/50). Our codebase for re-
producing the results is publicly available at here.

1. Introduction

In recent years, foundation models have achieved state-of-
the-art results for different tasks. However, the exponential
increase in the size of state-of-the-art models requires a
similarly exponential increase in the memory and compu-
tational costs required to train, store and use these models —
decreasing the accessibility of these models for researchers
and practitioners alike. To overcome this issue, different
model compression methods, such as pruning, quantization

“Equal contribution ' Schulich School of Engineering,
University of Calgary >Vector Institute for AI *Dept. of Com-
puter Science, University of Toronto. Correspondence to:
Mohammed Adnan <adnan.ahmad @ucalgary.ca>, Yani Ioannou
<yani.ioannou@ucalgary.ca>.

and knowledge distillation, have been proposed to reduce
the model size at different phases of training or inference.
Post-training model pruning (Han et al., 2016) has been
shown to be effective in compressing the model size, and
seminal works have demonstrated that large models can be
pruned after training with minimal loss in accuracy (Gale
etal.,, 2019; Han et al., 2015). While model pruning makes
inference more efficient, it does not reduce the computational
cost of training the model.

Motivated by the goal of training a sparse model from a
random initialization, Frankle & Carbin (2019) demonstrated
that training with a highly sparse mask is possible and
proposed the Lottery Ticket Hypothesis (LTH) to identify
sparse subnetworks that, when trained, can match the
performance of a dense model. The key caveat is that a dense
model must first be trained to find the sparse mask, which
can only be used with the same random initialization that was
used to train the dense model. Despite LTH seeing significant
interest in the research community, LTH masks cannot be
used to train from a new random initialization. Furthermore,
it has been observed empirically that the LTH is impractical
for finding a diverse set of solutions (Evci et al., 2022).

This posits our main research questions: How can we train a
LTH mask from a different random iy zation while main-
taining good generalization? Would doing so find a more
diverse set of solutions than observed with the LTH itself?

In this work, we try to understand why the LTH does not
work for different random initializations from a weight-space
symmetry perspective. Our hypothesis is that to reuse
the LTH winning ticket mask with a different random
initialization, the winning ticket mask obtained needs to
be permuted such that it aligns w

associated with the new random i1

our hypothesis in Figure 1.

To empirically validate our hypo

mask using Iterative Magnitude P

2020; Hanetal., 2015) on model A

that given a permutation that alig

of model A and a new random in

be reused. The sparse model (wit

be trained to closer match the ge

Mohammed Adnan
PhD Student

Dr. Ekansh Sharma
PhD Graduate
University of Toronto

@] o] o0 o o

R—

Rohan Jain
MSc Graduate

Dr. Rahul Krishnan
Assistant Professor
U. Toronto/Vector Institute

Presented at International Conference
on Machine Learning (ICML) 2025

O
~:2 UNIVERSITY OF

)

(//CALGARY



Sparse Training:
Aligning Sparse Masks
with Weight Symmetry

1. Short Biography

2. Motivation

3. Background

4. Aligning Sparse Masks




3. Background

. . L
. N .
. .
. . .
. . Lt
. . .
. . Lt
. N .
. .
e
LN
e

CI\/II uuuuuuuuuuuu
. . @ CALGARY

I. Weight Symmetry
ii. Sparse Training Problem
li. Lottery Ticket Hypothesis



Weight Symmetry: Foundations

® NN layers are permutation invariant: the
ordering of neurons is arbitrary

® Different permutations result in the same
function, but different parameterizations

o i.e. model is a different point in weight space

® NN are an example of what is generally
known as a symmetric function

Robert Hecht-Nielsen. On The Algebraic Structure of Feed-forward Network Weight Spaces. AT UNIVERSITY OF
CALGARY
Advanced Neural Computers. 1990. RETEK



Weight Symmetry: Foundations

® Different permutations result in same
function, but different weight
parameterizations

® For a NN with L layers, and layer width
w, the number of permutations is:
(wh*

® NN permutations often number more
than atoms in universe (1089)

o e e
~Ni i - i UNIVERSITY OF
Robert Hecht-Nielsen. On The Algebraic Structure of Feed-forward Network Weight Spaces. C M CALCARY
Advanced Neural Computers. 1990. R EIXK



Weight Symmetry: Implications
® No unique minima (or solutions) in
weight space

® Why 1st-order optimization can find
good solutions with random init2

® May exist only one “basin” modulo
permutations’?, e.g. why random init.
find similar solutions...

'Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation invariance in

linear mode connectivity of neural networks. ICLR 2022. . e
2Samuel K. Ainsworth, Jonathan Hayase, Siddhartha Srinivasa. Git Re-Basin: Merging Models modulo C ga/ﬁgghﬁ

Permutation Symmetries. ICLR 2023.

e © 00 o o



Permutation Alignment/Mapping
® Finding exact m for deep NN is NP Hard
® Greedy approximation w/ weight matching'

o Linear Assignment Problem (LAP) per layer

o Maximizes correlation of weights/activations

o Best results empirically for very wide NNs

® Activation matching more robust in general?

'Samuel K. Ainsworth, Jonathan Hayase, Siddhartha Srinivasa. Git Re-Basin: Merging Models modulo
Permutation Symmetries. ICLR 2023.

2Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur. Repair: Renormalizing C A At

UNIVERSITY OF

permuted activations for interpolation repair. ICLR 2023. CALGARY



3. Background

. . L
. N .
. .
. . .
. . Lt
. . .
. . Lt
. N .
. .
e
LN
e

CMI uuuuuuuuuuuu
. . @ CALGARY

i. Weight Symmetry
ii. Sparse Training Problem
li. Lottery Ticket Hypothesis



dense initialization

Standard NN Training

6 Random initialization

® Train a dense NN from a t=0 ~MO, o)
random initialization to find a
dense solution

® This solution generalizes training
well — in fact similarly even
for different random init.!

® Recall: weight symmetry

can explain this

High saliency weight
Low saliency weight dense solution

------- Masked weight gooc CN INT Y



dense initialization

Unstructured Pruning

6 Random initialization
® Prune low saliency weights ™° ~MO0, o)

o Most commonly remove
smallest magnitude weights

® "One-shot" pruning training
o Train and then prune once

® Iterative pruning
o Train a bit, prune a bit, repeat :
several times 60 —

pruning

High saliency weight

Low saliency weight dense solution pruned solution

good good C AT UNIVERSITY OF

"""" Masked weight CALGARY



Sparse Training?

® We know we don't need
~85-95% of weights at
inference...

® Lots of methods to prune
after training... but can we
train pruned NNs from
random initialization?

High saliency weight

Low saliency weight

....... Masked weight

dense initialization sparse initialization

Random initialization
Ot-0

training ,03}'

Opr -

pruning

dense solution

pruned solution
good good

UNIVERSITY OF

CALGARY

CML..



dense initialization sparse initialization

Naive Sparse Training

® Can we train sparse neural Random initialization
t=0
networks from random
initialization?

® Let's use only the known-
good mask from pruning training S

® Try to train our sparse model
from "scratch”, i.e. from B
random initialization... 6ur —

pruning

High saliency weight

Low saliency weight dense solution pruned solution

"""" Masked weight good good



dense initialization sparse initialization

Sparse Training
Problem

® The sparsely trained model -
(sparse solution) doesn't
generalize as well as the
original dense solution or
pruned solution!

Random initialization

training é& training

Ot —

pmnMgE

High saliency weight

Low saliency weight dense solution pruned solution sparse solution

"""" Masked weight good good poor
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dense initialization LT initialization

Lottery Ticket Hypothesis

LT initialization
(original)

—
B4 6.
® An unstructured sparse NN, i -

when trained from a Lottery

Ticket "initialization" can S
. &
generalize well training & training
® This initialization was the

original initialization the
dense (pruned) model was
trained from O —

pruning

dense solution pruned solution LT solution
Jonathan Frankle and Michael Carbin. 7%e Lottery 7icket Hypothesss. d d d
Traming Pruned Neural/ Networks. International Conference on goo goo goo
Learning Representations (ICLR), 2019



dense initialization LTinitialization

Lottery Ticket Hypothesis
(I’eVISGd) Random

Oi-0 initialization

training

LT initialization in general is
weights from early training’

pruning

® This is very expensive to find ©=

dense solution pruned solution LT solution

good good good
1Linear Mode Connectivity and the Lottery Ticket Hypothesis. Frankle et al., 2020



http://proceedings.mlr.press/v119/frankle20a.html

dense initialization LT initialization

Lottery Tickets

Random
. . initialization
® Howrandomisthe LT Ot

initialization?

training

early snapshot training

eO<t<<T

B¢t —

pruning

dense solution pruned solution LT solution

'Stabilizing the Lottery Ticket Hypothesis, Frankle et al., 2019 good good good
2Linear Mode Connectivity and the Lottery Ticket Hypothesis, Frankle et al., 2020



https://arxiv.org/abs/1903.01611
http://proceedings.mlr.press/v119/frankle20a.html

dense initialization / 7initialization

Lottery Tickets
random.
® How “random” is the LTH Oreo TEFAI,Z;)“OF‘
“initialization”? Not very... jzatio”

T \f{\’{\%{‘se 3
® LTH doesn’t work with an
arbitrary random init!

eV

training

Bo«r €arly snapshot

training

® In previous work we
showed LTs are re-learning
extremely similar solutions a
within the same basin' Ot pmg

\/

L 7'solution
good

pruned solutio
good

dense solution

'Utku Evci, Yani loannou, Cem Keskin, Yann Dauphin. Groarernt good

Flow in Sparse Neuwral Networks and How Lottery 7Tickels Win.
AAAI 2022




Random (Scratch)

it Initializations one
~ o
Lottery
e
(Sparse) N ~
Scratoh . Initialization - -';.'f!zys_
Basin -t
~~ - Pruning
Solution " Basin

1. LT solution is close to the pruned solution
2. LT/pruned solution is the same basin of convergence

3. LT/pruned solution’s learn very similar functions

LTs appear to re-learn the pruned solution they are derived from

Utku Evci, Yani loannou, Cem Keskin, Yann Dauphin. Graaient Flow /7 Sparse Neura/ Networks and How AT
Lottery Tickels Win. AAAI 2022

Pruning
Solution,

UNIVERSITY OF

CALGARY
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4. Aligning Sparse Masks

i. Hypothesis

ii. Experimental Methodology
lii. Results

Iv. Analysis
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Pruning Loss Landscape

w1

initialization
train
I mask*I
solution ---

dense  sparse

loss landscape with two
weights wy = (wgy, wq)

Train from w:=° to soln. w4=T

Prune wt=T with m, = (1, 0)

Figure 7. A 2D loss landscape visualization of our method in the setting of a model with a
single layer and two parameters on a single input scale

222 UNIVERSITY OF
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LTH Loss Landscape

initialization
train
I mask*I
solution ---

dense  sparse

® Project (prune) re-using my
® Train from wt=°0Om,

® End training at wt='®Om,

Figure 7. A 2D loss landscape visualization of our method in the setting of a model with a
single layer and two parameters on a single input scale.
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Sparse Loss Landscape

w1 WtB:0

. . I i Train w/ new random init. wj=°

solution
dense  sparse

Re-using my is illustrated

/ o This is clearly the wrong axis to
project to from new initialization

e o Masked init falls outside basin

Training from w5=°®m, doesn’t

find good soln.

7 Figure 7. A 2D loss landscape visualization of our method in the setting of a model with a
/ single layer and two parameters on a single input scale

/ . - -~
7 ~:2 UNIVERSITY OF
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Our Hypothesis

initialization
train
I mask*I
solution ---

dense  sparse

7 Hypothesis: Sparse training from
random init does not work well
because the mask is misaligned with

the new basin of w5™°

Can we adapt the mask m, derived

t=0 t=0
fromw, " forwg ?

Figure 7. A 2D loss landscape visualization of our method in the setting of a model with a
single layer and two parameters on a single input scale.

222 UNIVERSITY OF
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Our Hypothesis

initialization
- Ii Recall': the basins of wi™! and wg="
dense  sparse are related by a permutation m:

n(wi™T) = wh T

Are the masks for different basins
also related by the same
permutation?

Wo m(m,) = mg

'Samuel K. Ainsworth, Jonathan Hayase, Siddhartha Srinivasa. Git Re-Basin:
Merging Models modulo Permutation Symmetries. ICLR 2023.

222 UNIVERSITY OF

(//CALGARY




4. Aligning Sparse Masks

I. Hypothesis

Ii. Experimental Methodology
lii. Results

Iv. Analysis

. . .
. N .
. .
. . .
. . Lt
. . .
. . Lt
. N .
. .
e
LN
e

I f‘"';i UNIVERSITY OF
CIVI . . @ CALGARY



wil ~ N

train
(dense)
\ 4

WffT

Dense Solution

Dense Training
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t=T
Wy GO mpy

Pruned Solution

Dense Training
& Pruning
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t=T
Wy © my

Pruned Solution

Dense Training
& Pruning

Sparse Training

mask
\ 4
t=k
W5 GO my
train

t=T
Wg GO mpy

Naive baseline
Sparse Training
Problem

CM

.

|

O
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t=T
Wy © my

Pruned Solution

Dense Training
& Pruning

Sparse Training

train

wi T

OR 11

Naive baseline

Sparse Training
Problem
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t=T
Wy GO mpy

Pruned Solution

Dense Training
& Pruning

Sparse Training

Wp
LTH “rewinding”
.......... BT RN
train

t=T
Wg GO mpy

Naive baseline

Sparse Training
Problem

CM...

train

t=T

LTH Solution

Lottery Ticket
Hypothesis

UNIVERSITY OF

CALGARY



train e e e
(dense) mask mask
g A 4 \ 4
t=T t=T 5 t=k t=k
‘ Wy |~|— Wgp - W5 GO my W, ©Omy
. | 5
I I S . .
I prune | : train train
v | :
t—T . =T =T 7 t=T :
w Omy | —owh mr(wy): WtB O 1my Wy ©Omy ‘:
Pruned Solution acivationmatehing " Naive baseline LTH Solution
Dense Training Sparse Training Lottery Ticket
& Pruning Problem Hypothesis

mask = e - - CI\/II UNIVERSITY OF
match — .o CALGARY



11 o I P I e N LR E R R IR PP
(dense) mask
=2 y
t:T t:T %
W - =
‘ A F | WB E ® my
T ©
I I a - . . .
I prune | . train train train
Y | : ,
t=T . t=T t=T\ - =T t=T t=T
W, Omy| —owp ma(wy): W}tg Omy | |wp On(ma)| | Wi ©Omy
. activation matching . . . . .
Pruned Solution : Naive baseline Permuted solution LTH Solution
Dense Training Sparse Training Ours Lottery Ticket
& Pruning Problem Hypothesis

mask = e - - MI UNIVERSITY OF
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(dense) mask
=2 y
t:T t:T %
W - =
| Wi e et ©m,
T ©
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I prune | . train train train
¥ | : :
t=T . t=T t=T\ - =T t=T —
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. activation matching . . . .
Pruned Solution : Naive baseline Permuted solution LTH Solution
Dense Training Sparse Training Ours Lottery Ticket
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Sparse Training

train train train
A 4
WtB:T G my W%_T ® 7T(mA) WZ:T G my
Naive Permuted LTH
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Sparse Training

ResNet20 x {Width 8} on CIFAR-10
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Sparse Training
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Sparse Training

VGG11 x {Width 1} on CIFAR-10
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4. Aligning Sparse Masks

I. Hypothesis

ii. Experimental Methodology
lii. Results

iv. Analysis
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Effect of Model Width Multiplier
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a a a
(a) ResNet20x {w }/CIFAR-10 (b) ResNet20x {w}/CIFAR-100 (c) ResNet50 x {w }/ImageNet

Demonstrating LMC by linearly interpolating between w}="and w(w}=7).

® Larger width exhibits better linear mode connectivity, i.e. lower loss barriers

between w5 Tand m(wj™")

® As the width of the model increases, the approximate permutation matching

algorithm is more accurate, reducing the loss barrier

® Our results are best when model width multiplier is high CM vessiry or



Analysis of 0-1 Loss Basin of Solutions

® If our permutation matching is only 25 - 1.0
n(wi=") © m(my)

approximate, are solutions in same basin? -
' m(ws=")

154 *  wi=Tomn(my)
® Here we analyze the 0-1loss of three |

solutions, plotting their planar cross-section

1.0 4
0.5 “‘\
o Permuted dense soln. A: m(w}=T) 0.0

o Permuted masked soln. A: 1 (w5~ ®Om(m,) o

-1.0
o Soln. B masked by permuted mask:
w5~ On(my)

-15
-15 -1.0 -05 0.0 0.5

® In same basin, but different modes
C M ) ¢ UNIVERSITY OF
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Functional Diversity

® Our previous work showed that the LTH
relearns a highly similar solution

® Unlike LTH, we can reuse the LTH mask
with different random initializations

® We do see improved function diversity
over LTH, comparable to dense!

® More computationally efficient way to
improve diversity than iterative
magnitude pruning alone

Test Accuracy  Ensemble Disagree- KL

'"Utku Evci, Yani loannou, Cem Keskin, Yann Dauphin. Groarernt Flow /i Sparse Neural/ Networks and How

Lottery 7ickers Win. AAAI 2022

Mask JS
(%) Acc.(%) ment
ResNet20x {1}/CIFAR-10
none (dense) 92.76 £0.106 - - - -
IMP 91.09+£0.041 93.25 0.093 0.352 0.130
LTH 91.15+0.163 91.43 0.035 0.038 0.011
permuted 89.38+0.170 91.75 0.107 0.273 0.091
naive 88.68 £20.205 91.07 0.113 0.271 0.089
ResNet20x {4 }/CIFAR-100
none (dense) 78.37 £0.059 - - - -
IMP 7446 £0.321  79.27 0.259 1.005 0.372
LTH 75.35+0.204 75.99 0.117 0.134 0.038
permuted  72.48 +0.356 77.85 0.278 0.918 0.327
naive 71.054+0.366 76.15 0.290 0.970 0.348
1} T UNIVERSITY OF
C \/] CALGARY



Conclusion

® The Lottery Ticket Hypothesis excited the community on the possibility of sparse
training and sparse mask re-use, but LTH is limited to re-learning the same soln.

® We explain the sparse training problem: misalignment between a pruned mask
and the loss basin of a new random initialization prevents effective re-use of
sparse masks for training

® We show how to re-use a mask to find new solutions:
® We can approximately permute an existing sparse mask for a new random
initialization, although this is currently computationally expensive
® We found the functional diversity of sparse training solutions to be comparable to
dense training when using permuted masks.
CM... @



Future Directions

® Improving the efficiency and/or efficacy of permutation alignment would make
the method we propose more practical

® Explaining and/or avoiding weight "rewinding”, i.e. checkpoints in LTH/sparse
training

o Notably Dynamic Sparse Training (DST) methods do not need this, but learn masks

® We see high function diversity with our method of sparse training:
o Can we efficiently create ensembles using permutations of sparse masks?

o Could help align weight sparse experts in MoEs for mergin 2 UNIVERSITY OF
u p align weilg 9 Xp ging C QuvessY or
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What's Left After Distillation?
How Knowledge Transfer Impacts Fairness and Bias
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Calgary, AB, Canada
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Abstract

Knowledge Distillation is a commonly used Deep Neural Network (DNN) compression method,

which often maintains overall generalization performance. However, we show that even for
“TFAR-100, Tiny ImageNet and ImageNet,

as many as 41% of the ¢

comparing cla: ise accuracy (i.e. cl

student,/non-distilled student 1. Cha i s bias are not nece:

outcome when nxldeled outside of t! lext of a model’s ge. g two common
DPD) <md Equahzed Odda Dlﬁ'erence (EOD!

temperatures. Additions
similar predic 3 ts confirm that higher temperatures also improve
student model dividual fairness. This study highlights the uneven effects of distillation

is warranted when using distilled models for sensitive application domains.

Introduction

DNNs require significant computational resources, resulting in large overheads in compute, memory, and energy.
T swould oth-
le phones
2 enghani,
ion methods have been developed that reduce the size and
ion performance (Cheng et al., 2017). One such widely
ion method is Knowledge Distillation (distillation) (Hinton et al., 2015). Distillation h
tion in both industry and acaden of & al intelligence, encom-
,2021; Liuet al., 2020), speech
ognition (Yan et al., 2019; Dou et al.,
9; Chen et al., 2019; Gou et al., 2021).

llation involves transferring knowl
as the teacher) to a simpler model (known e student). In practice th (] udent model to achieve
comparable or even better generalization than the teacher model, while using far fewer parameters (Hinton
et al., 2015; Gou et al., 2021). Despite the widespread use of distillation, evaluation of the impact of distillation
since its proposal by (Hinton et al., 2015) has overwhelmingly focused almost exclusively on the impact it
has on generalization performa “ho and Hariharan, 2019; et 0).

Aida Mohammadshahi
MSc (Defended Jan. 2025)

ML Developer @ AltaML
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Tuesday, Decem_ber 10th, 2024

Muslims in ML (MusiML) Workshop
2:30-3:00 p.m. (Lightning Talk) *
4:30-5:00 p.m. (Internal Poster Session), 6:30-8:00 p.m (Joint Poster Session for Affinity Groups)

N
M 'Athar e, Vincent Michalski, Samira Fbrafiimi Kahou, Yanis loanmnou.
This paper explores sparse training in DRL, highlighting methods to improve dynamic sparse training
performance at high sparsity, underscoring the need for DRL-specific strategies.

L Taill . ith | M Guided Curricula.
Mohammed Adnan, Rahu/ Krishnan, Yans foannod.
Improving performance on long-tail classes by leveraging LLMs to build curricula.

Women in Machine Learning (WiML) Workshop
6:30 p.m - 8:00 p.m (Joint Poster Session for Affinity Groups)

Yufan Feng, Beryjamin 7on, Yarni loanmnou.
We extend the online sample reweighting method from robust learning to the context of backdoor
defense.

We explore the impact of knowledge distillation temperature on fairness for language and image
classification models.

Friday, December 13th, 2024

Main Conference
4:30-7:30 p.m. (Poster Session)

Navigating E D ics ity in | o s
Nasrb 2 NaSID. ), Ertk Sc s, Mike Lasby, Yani loannou, Roliit Babbar.
Investigates Dynamic Sparse Training for large output spaces. Leveraging semi-structured sparsity,
intermediate layers, and auxiliary loss, it enables end-to-end training with millions of labels.

Poster Location: East Exhibit Hall A-C #2004

Saturday, December 14th, 2024

UniReps: Unifying Representations in Neural Models
4:30-7:30 p.m. (Poster Session)

Rohan Jain, Mohammed Adnan, Fkansh Sharmma, Yani loanmnou.
Lottery Tickets can’t be trained from random init. We show that permuting the mask to align with the
new initialization’s optimization basin results in a mask that better approaches LTH generalization.
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