What’s Left After Distillation?
How Knowledge Transfer
Impacts Fairness and Bias

Yani loannou
Schulich Research Chair / Assistant Professor
Schulich School of Engineering, University of Calgary

Hanyang University

@O OI "\'-'_3;' UNIVERSITY OF
August 26, 2025 560000 W CALGARY



Short Biography

1. Short Biography

2. Calgary ML Lab

3. Recent Research Highlights
4. Distillation and Fairness

. . Lt
. M .
. .
. . .
.
. “ .
. . .
. . Lt
. M .
. .
.
-,
LI
e



$ UNIVERSITY OF

"--'-r J

ﬂ""m J!!I!E!I "‘I“_'LL




Biography: Yani loannou

PhD, University of Cambridge, 2018

® Prof. Roberto Cipolla (Department of Engineering)

Dr. Antonio Criminisi (Microsoft Research)
® Microsoft Research PhD Scholarship

Training CNNs with Low-Rank Filters for Efficient Image Classification.

Yani loannou, Duncan Robertson, Jamie Shotton, Roberto Cipolla, Antonio Criminisi.

ICLR 2016

Deep Roots: Improving CNN Efficiency with Hierarchical Filter Groups
Yani loannou, Duncan Robertson, Roberto Cipolla, Antonio Criminisi.
CVPR 2017

2019 — 2020

Google Brain (Toronto)

é
‘@ Visiting Researcher

Gradient Flow in Sparse Neural Networks and How Lottery
Tickets Win

Utku Evci, Yani loannou, Cem Keskin, Yann Dauphin

AAAI 2022 Oral Presentation

' A T UNIVERSITY OF
CM... S



Industry & Applied Al Experience

Google @WAYVE

Augmented Reality Autonomous Driving

BILLe MELINDA
(GATES foundation

Blood Cell/Malaria Classification

Exoplanet Detection

A A UNIVERSITY OF
CM... S



Recent Research
Highlights

1. Short Biography

2. Calgary ML Lab

3. Recent Research Highlights
4. Distillation and Fairness

CM...

IIIIIIIIIIII

CALGARY



Published as a conference paper at ICLR 2024
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WITH STRUCTURED SPARSITY : =
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ABSTRACT

Dynamic Sparse Training (DST) methods achieve state-of-the-art results in sparse

neural network training, matching the generalization of dense models while o
enabling sparse training and inference. Although the resulting models are highly Ly

sparse and theoretically less computationally expensive, achieving speedups with y
unstructured sparsity on real-world hardware is challenging. In this work, we b g -
propose a sparse-to-sparse DST method, Structured RigL (SRigL), to learn a Lo
variant of fine-grained structured N:M sparsity by imposing a constant fan-in
constraint. Using our empirical analysis of existing DST methods at high sparsity, ’ 4

we additionally employ a neuron ablation method which enables SRigL to achieve v QM '
state-of-the-art sparse-to-sparse structured DST performance on a variety of Neural | L .

Network (NN) architectures. Using a 90% sparse linear layer, we demonstrate a .

real-world acceleration of 3.4 x/2.5x on CPU for online inference and 1.7x/13.0x . AR E N1

on GPU for inference with a batch size of 256 when compared to equivalent Utku Evci Mihai Nica
dense/unstructured (CSR) sparse layers, respectively. Research Scientist Associate Professor

Google DeepMind U. Guelph/Vector

= W

1 INTRODUCTION

Dynamic Sparse Training (DST) methods such as RigL (Evci et al., 2021) are the state-of-the-art in . I n te rn ati O n a I C O n fe re n Ce fo r L e a r n i n g

sparse training methods for Deep Neural Networks (DNNs). DST methods typically learn unstructured

masks resulting in 85-95% fewer weights than dense models, while maintaining dense-like general- .

ization and typically outperforming masks found via pruning. Furthermore, sparse-to-sparse DST algo- R e p r e S e n ta tl O n S ( I C L R) 2 O 2 4
rithms are capable of employing sparsity both during training and inference, unlike pruning and dense-

to-sparse DST methods such as SR-STE (Zhou et al., 2021) which only exploit sparsity at inference time.

‘While models trained with DST methods are highly sparse and enable a large reduction in Floating

Point Operations (FLOPs) in theory, realizing these speedups on hardware is challenging when the

sparsity pattern is unstructured. Even considering recent advances in accelerating unstructured Sparse

Neural Networks (SNNs) (Gale et al., 2020; Elsen et al., 2020; Ji & Chen, 2022), structured sparsity

realizes much stronger acceleration on real-world hardware. On the other hand, structured sparse

pruning often removes salient weights, resulting in worse generalization than comparable unstructured O o «:n UNIVERSITY OF
SNNs for the same sparsity level (Fig. 1a). Our work presents a best-of-both-worlds approach: r'\"“/'\ C A LG A RY
we exploit the DST framework to learn both a highly-sparse and structured representation while ° o 00 o o Y

maintaining generalization performance. In summary, our work makes the following contributions:
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Abstract

Knowledge Distillation is a commonly used Deep Neural Network (DNN) compression method,

which often maintains overall generalization performance. However, we show that even for
“TFAR-100, Tiny ImageNet and ImageNet,

as many as 41% of the ¢

comparing cla: ise accuracy (i.e. cl

student,/non-distilled student 1. Cha i s bias are not nece:

outcome when nxldeled outside of t! lext of a model’s ge. g two common
DPD) <md Equahzed Odda Dlﬁ'erence (EOD!

temperatures. Additions
similar predic 3 ts confirm that higher temperatures also improve
student model dividual fairness. This study highlights the uneven effects of distillation

is warranted when using distilled models for sensitive application domains.

Introduction

DNNs require significant computational resources, resulting in large overheads in compute, memory, and energy.
T swould oth-
le phones
2 enghani,
ion methods have been developed that reduce the size and
ion performance (Cheng et al., 2017). One such widely
ion method is Knowledge Distillation (distillation) (Hinton et al., 2015). Distillation h
tion in both industry and acaden of & al intelligence, encom-
,2021; Liuet al., 2020), speech
ognition (Yan et al., 2019; Dou et al.,
9; Chen et al., 2019; Gou et al., 2021).

llation involves transferring knowl
as the teacher) to a simpler model (known e student). In practice th (] udent model to achieve
comparable or even better generalization than the teacher model, while using far fewer parameters (Hinton
et al., 2015; Gou et al., 2021). Despite the widespread use of distillation, evaluation of the impact of distillation
since its proposal by (Hinton et al., 2015) has overwhelmingly focused almost exclusively on the impact it
has on generalization performa “ho and Hariharan, 2019; et 0).
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Sparse Training from Random Initialization:
Aligning Lottery Ticket Masks using Weight Symmetry

Mohammed Adnan “!'2 Rohan Jain“' Ekansh Sharma?? Rahul G. Krishnan>? Yani Ioannou '

Abstract

The Lottery Ticket Hypothesis (LTH) suggests
there exists a sparse LTH mask and weights that
achieve the same generalization performance as
the dense model while using significantly fewer
parameters. However, finding a LTH solution is
computationally expensive, and a LTH’s sparsity
mask does not generalize to other random weight
initializations. Recent work has suggested that
neural networks trained from random initialization
find solutions within the same basin modulo per-
mutation, and proposes a method to align trained
models within the same loss basin. We hypothe-
size that misalignment of basins is the reason why
LTH masks do not generalize to new random ini-
tializations and propose permuting the LTH mask
to align with the new optimization basin when per-
forming sparse training from a different random
init. We empirically show a significant increase in
generalization when sparse training from random
initialization with the permuted mask as compared
to using the non-permuted LTH mask, on multiple
datasets (CIFAR-10/100 & ImageNet) and models
(VGG11 & ResNet20/50). Our codebase for re-
producing the results is publicly available at here.

1. Introduction

In recent years, foundation models have achieved state-of-
the-art results for different tasks. However, the exponential
increase in the size of state-of-the-art models requires a
similarly exponential increase in the memory and compu-
tational costs required to train, store and use these models —
decreasing the accessibility of these models for researchers

“Equal contribution ' Schulich School of Engineering,
University of Calgary *Vector Institute for Al *Dept. of Com-
puter Science, University of Toronto. —Correspondence to:
Mohammed Adnan <adnan.ahmad @ucalgary.ca>, Yani Ioannou
<yani.ioannou@ucalgary.ca>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

and practitioners alike. To overcome this issue, different
model compression methods, such as pruning, quantization
and knowledge distillation, have been proposed to reduce
the model size at different phases of training or inference.
Post-training model pruning (Han et al., 2016) has been
shown to be effective in compressing the model size, and
seminal works have demonstrated that large models can be
pruned after training with minimal loss in accuracy (Gale
etal,,2019; Han et al., 2015). While model pruning makes
inference more efficient, it does not reduce the computational
cost of training the model.

Motivated by the goal of training a sparse model from a
random initialization, Frankle & Carbin (2019) demonstrated
that training with a highly sparse mask is possible and
proposed the Lottery Ticket Hypothesis (LTH) to identify
sparse subnetworks that, when trained, can match the
performance of a dense model. The key caveat is that a dense
model must first be trained to find the sparse mask, which
can only be used with the same random initialization that was
used to train the dense model. Despite LTH seeing significant
interest in the research community, LTH masks cannot be
used to train from a new random initialization. Furthermore,
it has been observed empirically that the LTH is impractical
for finding a diverse set of solutions (Evci et al., 2022).

our main research questions: How can we train a

om a different random initialization while main-

taining good generalization? Would doing so find a more
diverse set of solutions than observed with the LTH itself?

In this work, we try to understand why the LTH does not
work for different random initializations from a weight-space
symmetry perspective. Our hypothesis is that to reuse
the LTH winning ticket mask with a different random
initialization, the winning ticket mask obtained needs to
be permuted such that it aligns with the optimization basin
associated with the new random initialization. We illustrate
our hypothesis in Figure 1.

To empirically validate our hypothesis, we obtain a sparse
mask using Iterative Magnitude Pruning (IMP) (Renda et al.,
2020; Han etal., 2015) on model A (from Figure 1) and show
that given a permutation that aligns the optimization basin
of model A and a new random initialization, the mask can

Adnan Mohammad
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Ekansh Sharma
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Teacher

What is Knowledge Distillation?

® A method of transferring “knowledge” from a
larger model (or models) to a smaller model |
distillation

® c.g. ensemble of models =» single model

® Preserves generalization (test accuracy)
® Commonly used to compress large models
o Large model = small model (Student)

Student

Distilling the knowledge in a neural network. Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. NeurlPS Deep Learning Workshop 2014.



Teacher

What is Knowledge Distillation?

® Commonly used to compress large models

® Used extensively in industry to make models

smaller for applications
o Smaller models = cheaper compute costs
o Smaller models enable mobile applications

Student

o Large model =» small model (Student) |
distillation

Distilling the knowledge in a neural network. Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. NeurlPS Deep Learning Workshop 2014.



What is Knowledge Distillation?

® DeepSeek R1(671B MoE Model)
o Distilled smaller (1.5 - 70B) models, e.g. Llama

o These smaller models are the models easier to use in practice

GPQA  LiveCode

Model AIME 2024 MATH-500 Diamond Bench CodeForces
pass@l cons@64  pass@1 pass@1 pass@1 rating
GPT-40-0513 9.3 134 74.6 49.9 32.9 759
Claude-3.5-Sonnet-1022 16.0 26.7 78.3 65.0 38.9 717
OpenAl-ol-mini 63.6 80.0 90.0 60.0 53.8 1820
QwQ-32B-Preview 50.0 60.0 90.6 54.5 419 1316
DeepSeek-R1-Distill-Qwen-1.5B  28.9 52.7 83.9 33.8 16.9 954
DeepSeek-R1-Distill-Qwen-7B 55.5 83.3 92.8 49.1 37.6 1189
DeepSeek-R1-Distill-Qwen-14B 69.7 80.0 93.9 59.1 53.1 1481
DeepSeek-R1-Distill-Qwen-32B 72.6 83.3 94.3 62.1 57.2 1691
DeepSeek-R1-Distill-Llama-8B 50.4 80.0 89.1 49.0 39.6 1205
DeepSeek-R1-Distill-Llama-70B 70.0 86.7 94.5 65.2 57.5 1633

Table 5 | Comparison of DeepSeek-R1 distilled models and other comparable models on
reasoning-related benchmarks.

DeepSeek-V3 Technical Report, DeepSeek-Al, arXiv 2412.19437, 2024
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Abstract

Knowledge Distillation is a commonly used Deep Neural Network (DNN) compression method,
which often maintains overall generalization performance. However, we show that even for
balanced image classification datasets, such as CIFAR-100, Tiny ImageNet and ImageNet,
as many as 41% of the classes are statistically significantly affected by distillation when
comparing class-wise accuracy (i.e. class bias) between a teacher/distilled student or distilled
student,/non-distilled student model. Changes in class bias are not necessarily an undesirable
outcome when considered outside of the context of a model’s usage. Using two common
fairness metrics, Demographic Parity Difference (DPD) and Equalized Odds Difference (EOD)
on models trained with the CelebA, Trifeature, and HateXplain datasets, our results suggest
that increasing the distillation temperature improves the distilled student model’s fairness,
and the distilled student fairness can even surpass the fairness of the teacher model at high
temperatures. Additionally, we examine individual fairness, ensuring similar instances receive
similar predictions. Our results confirm that higher temperatures also improve the distilled
student model’s individual fairness. This study highlights the uneven effects of distillation
on certain classes and its potentially significant role in fairness, emphasizing that caution
is warranted when using distilled models for sensitive application domains.

1 Introduction

DNNs require significant computational resources, resulting in large overheads in compute, memory, and energy.
Decreasing this computational overhead is necessary for many real-world applications where these costs would oth-
erwise be prohibitive, or even make their application infeasible — e.g. the deployment of DNNs on mobile phones
or edge devices with limited resources (Chen et al., 2016; Cheng et al., 2018; Gupta and Agrawal, 2022; Menghani,
2023). To address this challenge, DNN model compression methods have been developed that reduce the size and
complexity of DNNs while maintaining their generalization performance (Cheng et al., 2017). One such widely
used model compression method is Knowledge Distillation (distillation) (Hinton et al., 2015). Distillation has
found extensive application in both industry and academia across various domains of artificial intelligence, encom-
passing areas such as Natural Language Processing (NLP) (Jiao et al., 2019; Fuet al., 2021; Liu et al., 2020), speech
recognition (Ng et al., 2018; Gao et al., 2019; Perez et al., 2020), and visual recognition (Yan et al., 2019; Dou et al.,
2020; Chawla et al., 2021), specifically image classification (Zhu et al., 2019; Chen et al., 2019; Gou et al., 2021).

Distillation involves transferring knowledge from a complex model with superior performance (referred to
as the teacher) to a simpler model (known as the student). In practice this allows the student model to achieve
comparable or even better generalization than the teacher model, while using far fewer parameters (Hinton
et al., 2015; Gou et al., 2021). Despite the widespread use of distillation, evaluation of the impact of distillation
since its proposal by (Hinton et al., 2015) has overwhelmingly focused almost exclusively on the impact it
has on generalization performance (Cho and Hariharan, 2019; Mirzadeh et al., 2020).

Aida Mohammadshahi
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Neural Networks as Functions X

® Neural Networks are function approximators v

® A neural network learns a function

f mapping an input x to an output y
fx)=y

® In practice, NNs for classification learn to
predict a probability distribution p, from
which the “hard” classification of a class y is
made




“Dark Knowledge”

® Trained models learn more
than just how to predict labels

f(x) ={0.4,0.5,0.1)

® They learn a function with rich
knowledge of the domain

® AnImageNet model knows that
a cat and dog are more similar
to each other than an airplane

@O Oi s UNIVERSITY OF
IAVA (\0/) CALGARY



Temperature Softmax

exp (7)

yA

2 exp (7)

pi =

f(x, T =1)=1{0.09,09,0.01} J_

f(x, T =10) ={0.4,0.5,0.1} '_

A softmax p(z) gives us a
probability output from logits z

Distillation adds “temperature”
T to softmax

The typical softmax (T=1) gives

very highly confident outputs
for the target class, i.e. a “hard
distribution

Larger temp T gives “softer”
distributions

222 UNIVERSITY OF
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Knowledge
Distillation and
Fairness



Recall: Neural Networks as Functions

® NNs are function approximators l

® A neural network learns a function

f mapping an input x to an output y fx) =y

<



Teacher

What does KD Learn?

® When we distill a large teacher model to a

small student, we often see generalization
performance (test accuracy) maintained distillation

® Does this mean that the Teacher and Student

have learned similar functions? E % 1

Student

Distilling the knowledge in a neural network. Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. NeurlPS Deep Learning Workshop 2014.



What does KD Learn?

® When we distill a large teacher model to a
small student, we often see generalization
performance maintained

® Does this mean that the Teacher and Student
have learned similar functions?

® Not necessarily: accuracy is aggregate
measure over many samples in test set

Teacher

| distillation

Student




What does KD Learn?

® When we distill a large teacher model to a
small student, we often see generalization

performance maintained

® However, student can learn different
function than teacher

® Why does this matter?

Teacher

fx) =y




What does KD Learn?

® When we distill a large teacher model to a
small student, we often see generalization
performance maintained

® However, student can learn different
function than teacher

y y
® Why does this matter?
Teacher Student
® Student may learn different algorithmic fx)=y gx) =y

biases than Teacher!



Teacher

Research Questions

® Q: What classes are significantly affected by

distillation?
distillation

® Q: Whatis the impact of increase
temperature T on the model’s class biases?

® Q: How does distillation temperature affect
group fairness?
® Q: How does distillation temperature affect

individual fairness?

Student



Class-wise Bias: Analysis

® Q: What classes are significantly affected by distillation?

x
® Disagreement of the models f, g on predictions for x,;: l

0 if f(xn) = g(xn)

CMP(f(x), 9(x,)) = 1 if f(x,) # g(x,)

® Compare the teacher f and distilled student g model’s y y
disagreement for each class c:
Teacher Student
fx)=y gx) =y

CMP(f (%), 9(xz)) where (Xn,¥n | Yn =)

Deep Ensembles: A Loss Landscape Perspective. Stanislav Fort, Huiyi Hu, Balaji Lakshminarayanan. arXiv:1912.02757



Class-wise Bias: Analysis

® Compare the teacher f and distilled student g model’s disagreement for each class c:

® \We use a non-distilled student h (trained from scratch) as a baseline

X

|

distillation training
y y y
Teacher Distilled Student Non-Distilled

Student
fx)=y gx)=y h(x) =y



Class-wise Bias: Models/Datasets
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Figure 2: Class-wise Disagreement. Disagreement between a ResNet-56 teacher and ResNet-20 (left)
non-distilled/(right) distilled student for (a) CIFAR-10 using 7'=9 and (b) SVHN using 7'=7. The diagonals
are excluded since here both models predict the same class without any disagreement.

Teacher (#param) | Student (#param)

CIFAR-10/100, SVHN  ResNet56 (0.85M)  ResNet20 (0.27M)



Class-wise Bias: Analysis

® Q: What is the impact of increase temperature T on the model’s class biases?

® TC =Teacher vs. Distilled Student, SC = Trained Student vs. Distilled Student

Table 1: Class-wise Bias and Distillation. The number of statistically significantly affected classes
comparing the class-wise accuracy of teacher vs. Distilled Student (DS) models, denoted #TC, and Non-Distilled
Student (NDS) vs. distilled student models, denoted #SC.

CIFAR-100 ImageNet
Teacher/Student ResNet56/ResNet20 DenseNet169/DenseNet121 ResNet50/ResNet18 ViT-Base/TinyViT

Model Temp  Test Acc. (%) #SC #TC Test Acc. (%) #SC #TC Test Top-1 Acc. (%) #SC #TC Test Top-1 Acc. (%) #SC #TC
Teacher - 70.87 + 0.21 - - 72.43 £ 0.15 - 76.1 £ 0.13 - - 81.02 £ 0.07 - -
NDS - 68.39 £ 0.17 - - 70.17 £ 0.16 - - 68.64 £ 0.21 - - 78.68 £+ 0.19 - -
DS 2 68.63 £ 0.24 5 15 70.93 £ 0.21 4 12 68.93 £ 0.23 77 314 78.79 £ 0.21 83 397
DS 3 68.92 + 0.21 7 12 71.08 £ 0.17 4 11 69.12 £ 0.18 113 265 78.94 +£0.14 137 318
DS 4 69.18 £ 0.19 8 9 71.16 £ 0.23 5 9 69.57 £+ 0.26 169 237 79.12 £+ 0.23 186 253
DS 5 69.77 £ 0.22 9 8 71.42 £ 0.18 8 9 69.85 £+ 0.19 190 218 79.51 £ 0.17 215 206
DS 6 69.81 £ 0.15 9 8 71.39 £ 0.22 8 8 69.71 £ 0.13 212 193 80.03 £ 0.19 268 184
DS 7 69.38 £ 0.18 10 6 71.34 £ 0.16 9 7 70.05 £+ 0.18 295 174 79.62 + 0.23 329 161
DS 8 69.12 £ 0.21 13 6 71.29 £0.13 11 7 70.28 £ 0.27 346 138 79.93 £ 0.12 365 127
DS 9 69.35 £ 0.27 18 9 71.51 £0.23 12 9 70.52 £ 0.09 371 101 80.16 £ 0.17 397 96
DS 10 69.24 £+ 0.19 22 11 71.16 £ 0.21 14 10 70.83 £ 0.15 408 86 79.98 £+ 0.12 426 78
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Figure 3: Temperature vs. Test Accuracy/Class Bias. Number of non-distilled vs. distilled student
significantly affected classes (S.S.C.) and the number of teacher vs. distilled student significantly affected classes
(T.S.C.) by distillation in (a) CIFAR-100 (ResNet-56 /ResNet-20) and (b) ImageNet datasets (ResNet-50/ResNet-
18), with 100 and 1000 total classes respectively. As the temperature used for distillation increases up to T=10,
the S.S.C. rises for both datasets. For ImageNet, T.S.C. decreases, while for CIFAR-100, it first decreases and then
slightly increases. The changes in the distilled student’s test accuracy over all classes are also depicted in the figure.
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Figure 8: Temperature vs. Test Accuracy/Class Bias. Number of non-distilled vs. distilled student
significantly affected classes (S.S.C.) and the number of teacher vs. distilled student significantly affected
classes (T.S.C.) by distillation in (a) CIFAR-100 (ResNet-56 /ResNet-20) and (b) ImageNet datasets (ResNet-
50/ResNet-18), with 100 and 1000 total classes respectively. As the temperature used for distillation increases,
the S.S.C. rises for both datasets up to a certain T, after which it decreases. Meanwhile, T.S.C. decreases first and
then increases. The changes in the distilled student Test Accuracy over all classes are also depicted in the figure.



Distillation and Class Bias
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Group Fairness



Group Fairness

Applicants

® A change in class bias alone is not meaningful
(bad or good) in itself...

® What is clearly bad are unfair outcomes, i.e. a
model not treating individuals from different
groups equitably

® An example is a hiring system that accepts
more men than women




Group Fairness: Demographic Parity

® We want individuals belongs to different
groups to have equal probability of a positive
outcome

o e.g. we want men and women to have equal
odds of being hired

® Let A be the sensitive attribute (gender), and

AN

Y =1 be the outcome (i.e. hired), we want:

P(Y=1|A=a)=P(Y=1|A=b)

Applicants




Group Fairness Metrics: Demographic Parity Difference
Applicants

® Demographic Parity:
PY=1|A=a)=P(Y=1|A=Db)

® A metric based on demographic parity is the
Demographic Parity Difference (DPD):

DPD = maxP(Y =1|A = a) —mEiEP(Y =1]|A=aqa)
a

a€eA

® DPD =0 means perfectly fair in demographic
parity fairness



Group Fairness: Equalized Odds

Unqualified
® We want individuals to have equal probability ~ [APPlicants
of a positive or negative outcome given a

condition is true

o i.e. want groups to have equal probability of
outcomes AND to have same TPR and FPR
rates

o e.g. we want men and women to have equal Qualified

odds of being hired/nat, if they are qualified
Women Men

® Let A be the sensitive attribute, Y be the
outcome, and Y be the true label, we want:

Hardt,ﬁo(ig Pﬁe, }I’ICI Zebr_o, I\XﬂwgﬁlQaG)QEZuemv oECQpYortu_mw]l'rfSupe;iseXLJaminE h!egt)al Information Processing Systems. 29. arXiv:1610.02413.



https://papers.nips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1610.02413

Group Fairness Metrics: Demographic Parity Difference

® Demographic Parity:
PY=1y=yA=a)=P(Y =1Y=y|A=Db)

® We use a metric based on equalized odds:
Equalized Odds Difference (EOD)

® EOD=0 means perfectly fair in equalized odds
fairness

Unqualified
Applicants

Qualified

Women Men




CelebA Dataset

® CelebA is a dataset of celebrity
photos

® CelebA has protected attributes,
such as gender and age

® Also has independent attributes
such as “smiling” or “glasses”

Wearing

Eyeglasses
e Hat

Mustache Y. .
{

® Often used in fairness, but is also
a deeply problematic dataset...

Smiling

Deep Learning Face Attributes in the Wild. Liu, Ziwei and Luo, Ping and o o
Wang, Xiaogang and Tang, Xiaoou. Proceedings of International ( ( ; I ) ”"XERSRH$
Conference on Computer Vision (ICCV), 2015. 0000 00 V CALG
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—e— Distilled Student (EOD) —-— Teacher (EOD) —— Non-distilled Student (EOD)
—»— Distilled Student (DPD) ---- Teacher (DPD) ---- Non-distilled Student (DPD)

Figure 4: Evaluation of Fairness Metrics for Distilled Students in Computer Vision (CV) . Equalized
0Odds Difference (EOD) and Demographic Parity Difference (DPD) are reported in % and lower values indicate
improved fairness. (a) illustrates fairness metrics for the CelebA dataset with ’smiling’ label concerning the
"Young’ demographic attribute and (b) concerning the "Male’ demographic attribute. (c) presents fairness
metrics for the Trifeature dataset with ’shape’ label with regard to the ’color’ attribute and (d) with regard
to the 'texture’ attribute. It is notable that the models are fairer for the Trifeature dataset compared to
the CelebA dataset with lower values in metrics. The explanation lies in the fact that the Trifeature dataset
maintains a balanced distribution of demographic attributes, while the CelebA dataset contains biases that
mirror real-world disparities. As seen in the second column, the downward trend does not continue at very
high temperatures (T=20,30,40), as the teacher model generates nearly uniform softmax outputs.

ResNet50 (24M) =»ResNet18
(11.4M) distillation with CelebA
dataset

Protected attribute is Age (top)
and Gender (bottom)

Evaluated on “smiling”
classification

Fairness improves (i.e.
EOD/DPD decreases) with
higher T

@O OI “22 UNIVERSITY OF
IAV4 (\J CALGARY



Teacher/Student:

Model

Teacher
NDS

DS
DS
DS
DS
DS
DS
DS
DS
DS
DS

Temp

1
2
3
4
5
6
7
8
9

—_
[e=)

93.09 £+ 0.08
92.03 £ 0.03

92.12 + 0.06
92.14 £ 0.11
92.53 £ 0.13
92.17 £ 0.10
92.29 £+ 0.05
92.26 + 0.08
92.12 £ 0.08
92.66 + 0.12
93.18 £ 0.15
92.57 £ 0.11

CelebA (smiling)
ResNet-50 / ResNet-18
Test Acc. (%) T

EOD |

4.69 + 0.06
6.11 £ 0.05

6.02 +0.11
5.67 £ 0.08
5.45 £ 0.05
5.36 £ 0.02
5.39 £ 0.04
5.30 £ 0.01
5.26 £ 0.05
5.22 £0.02
5.14 £ 0.04
4.98 +0.03

DPD |

9.41 £0.11
10.60 £ 0.08

9.97 £ 0.08
9.75 +£ 0.09
9.63 £ 0.06
9.38 £0.03
9.30 £ 0.05
9.38 £ 0.07
9.17 £0.10
9.05 £ 0.04
9.01 £0.08
8.86 + 0.04

ResNet50 (24M) =»ResNet18
(11.4M) distillation with CelebA
dataset

Protected attribute is Age (top)
and Gender (bottom)
Evaluated on “smiling”
classification

Table 2: Fairness Metrics and Distillation. The performance of teacher, Non-Distilled Student (NDS),
and Distilled Student (DS) models with a range of temperatures T" on the Trifeature and CelebA datasets.

Fairness metrics are presented for Trifeature with regard to color attribute and for CelebA with regard to the ‘ Fa | rn eSS | m p rove S (I . e .
Young demographic attribute. With increasing temperature, EOD and DPD have a downward trend signifying
EOD/DPD decreases) with

enhanced fairness. Mean and std. dev. are over five random inits.

higher T
<//"Q>O GI '1_.; UNIVERSITY OF
\Ej}'@ 00000 C\J CALGARY
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HateExplain Dataset
® HateExplain is a dataset used

Race African, Arabs, Asians, Caucasian, Hispanic . .
Religion Buddhism, Christian, Hindu, Tslam, Jewish for detecting hate speech in
Gender Men, Women . .

Sexual Orientation | Heterosexual, Gay online discourse

Miscellaneous Indigenous, Refugee/Immigrant, None, Others
® Covers arange of protected

groups (we use target groups

Table 3: Target groups considered for the annotation.

Twitter aggregated, e.g. religion)
Hateful . ;
Offensive ® We combine hateful/offensive
Normal i
Undecided to make task binary
classification ("toxic” v.s.
Table 4: Dataset details. “Undecided” refers to the cases “normal”)
where all the three annotators chose a different class.
HateXplain: A Benchmark Dataset for Explainable Hate Speech Detection. o o
Binny Mathew, Punyajoy Saha, Seid Muhie Yimam, Chris Bi P (i ; ICALGCARY
inny Mathew, Punyajoy Saha, Seid Muhie Yimam, Chris Biemann, Pawan oooI . (/) CALGARY

Goyal, Animesh Mukherjee. AAAI 2021.



BERT-Base (110M) <> DistilBERT (66M) distillation

(a) HateXplain (gender)
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Figure 5: Evaluation of Fairness Metrics for Distilled Students in Natural Language Processing
(NLP). Equalized Odds Difference (EOD) and Demographic Parity Difference (DPD) are reported in % and
lower values indicate improved fairness. (a) illustrates fairness metrics for the HateXplain dataset concerning
the ’gender’ demographic attribute, and (b) with regard to the 'race’ attribute. The teacher employed the
BERT architecture, while the student used the DistilBERT architecture.



Individual Fairness Metrics

® Individual fairness metrics are very different

® Group Fairness: individuals with different protected
attributes should see similar outcomes

Q
=
[\

® Individual Fairness: similar individuals should see
similar outcomes

® Metric captures whether a model provides consistent | |
predictions for semantically similar inputs, ensuring v,
fairness at an individual level

Q

Y2

® Lipschitz condition proposed by Dwork et al. (2012),
smaller values = more fair

Fairness through awareness. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel. In Proceedings of the 3rd Innovations in Theoretical Computer Science (ITCS), pages 214-226. ACM, 2012.



Table 4: Individual Fairness Metrics Across Datasets. Individual fairness scores for Teacher, Non-Distilled
Student (NDS), and Distilled Student (DS) models across CelebA, Trifeature, and HateXplain datasets. Scores
for DS models are reported for varying temperature values 7.

Individual Fairness |

CelebA Trifeature HateXplain
Model Temp  ResNet-50 / ResNet-18  ResNet-20 / LeNet-5 ~ BERT-Base / DistilBERT
Teacher — 0.0407 0.016 0.0320
NDS — 0.124 0.0462 0.1078
DS 1 0.113 0.0422 0.0994
DS 2 0.104 0.0407 0.0985
DS 3 0.0908 0.0393 0.0927
DS 4 0.0906 0.0387 0.0882
DS 5 0.0886 0.0384 0.0823
DS 6 0.0799 0.0377 0.0768
DS 7 0.0753 0.0356 0.0727
DS 8 0.0712 0.0349 0.0689
DS 9 0.0701 0.0341 0.0681
DS 10 0.0697 0.0338 0.0654

® Clear increase in individual fairness with increased distillation temp



Conclusion

Knowledge Distillation is pervasive in its use, you are likely affected by the
decisions of a distilled model daily

And yet the effect of distillation temperature on model fairness has not been
looked at previously!

We find across models, datasets and both vision and language modalities that
distillation temperature affects the bias and fairness of models

We also consistently find that higher distillation temperatures leads to more fair
models

In some cases, distilled models (with high T) can be fairer than even the (much
larger) teacher model!

1} 1 UNIVERSITY OF
CM CALGARY

e © 00 o o



Future Directions

Can distillation be an effective method of improving model fairness?

Are there any trade offs to using large temperatures, less typically used with
distillation in practice?

Does distillation have a similar effect on LLMs, e.g. DeepSeek?

It 1 UNIVERSITY OF
CM... @
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How Knowledge Transfer Impacts Fairness and Bias.
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