
Sparse Training:
Aligning Sparse Masks with 
Weight Symmetry

Yani Ioannou
Schulich Research Chair / Assistant Professor
Dept. of Electrical & Software Engineering,
Schulich School of Engineering, University of Calgary

Imperial College

October 2nd, 2025



Sparse Training:
Aligning Sparse Masks 
with Weight Symmetry

1. Short Biography
2. Motivation
3. Background
4. Aligning Sparse Masks





Sparse Training:
Aligning Sparse Masks 
with Weight Symmetry

1. Short Biography
2. Motivation
3. Background
4. Aligning Sparse Masks



Why Sparse Neural Networks?

● We will focus on weight sparsity, but there 
are other forms of sparsity (e.g. activation)

● Reducing the cost of NN training and 
inference

● Learning NN structure from data

● Understanding & improving NN training
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Sparse Training from Random Initialization:

Aligning Lottery Ticket Masks using Weight Symmetry

Mohammed Adnan * 1 2 Rohan Jain * 1 Ekansh Sharma 3 2 Rahul G. Krishnan 3 2 Yani Ioannou 1

Abstract
The Lottery Ticket Hypothesis (LTH) suggests
there exists a sparse LTH mask and weights that
achieve the same generalization performance as
the dense model while using significantly fewer
parameters. However, finding a LTH solution is
computationally expensive, and a LTH’s sparsity
mask does not generalize to other random weight
initializations. Recent work has suggested that
neural networks trained from random initialization
find solutions within the same basin modulo per-
mutation, and proposes a method to align trained
models within the same loss basin. We hypothe-
size that misalignment of basins is the reason why
LTH masks do not generalize to new random ini-
tializations and propose permuting the LTH mask
to align with the new optimization basin when per-
forming sparse training from a different random
init. We empirically show a significant increase in
generalization when sparse training from random
initialization with the permuted mask as compared
to using the non-permuted LTH mask, on multiple
datasets (CIFAR-10/100 & ImageNet) and models
(VGG11 & ResNet20/50). Our codebase for re-
producing the results is publicly available at here.

1. Introduction
In recent years, foundation models have achieved state-of-
the-art results for different tasks. However, the exponential
increase in the size of state-of-the-art models requires a
similarly exponential increase in the memory and compu-
tational costs required to train, store and use these models —
decreasing the accessibility of these models for researchers
and practitioners alike. To overcome this issue, different
model compression methods, such as pruning, quantization

*Equal contribution 1 Schulich School of Engineering,
University of Calgary 2Vector Institute for AI 3Dept. of Com-
puter Science, University of Toronto. Correspondence to:
Mohammed Adnan <adnan.ahmad@ucalgary.ca>, Yani Ioannou
<yani.ioannou@ucalgary.ca>.

and knowledge distillation, have been proposed to reduce
the model size at different phases of training or inference.
Post-training model pruning (Han et al., 2016) has been
shown to be effective in compressing the model size, and
seminal works have demonstrated that large models can be
pruned after training with minimal loss in accuracy (Gale
et al., 2019; Han et al., 2015). While model pruning makes
inference more efficient, it does not reduce the computational
cost of training the model.

Motivated by the goal of training a sparse model from a
random initialization, Frankle & Carbin (2019) demonstrated
that training with a highly sparse mask is possible and
proposed the Lottery Ticket Hypothesis (LTH) to identify
sparse subnetworks that, when trained, can match the
performance of a dense model. The key caveat is that a dense
model must first be trained to find the sparse mask, which
can only be used with the same random initialization that was
used to train the dense model. Despite LTH seeing significant
interest in the research community, LTH masks cannot be
used to train from a new random initialization. Furthermore,
it has been observed empirically that the LTH is impractical
for finding a diverse set of solutions (Evci et al., 2022).

This posits our main research questions: How can we train a
LTH mask from a different random initialization while main-
taining good generalization? Would doing so find a more
diverse set of solutions than observed with the LTH itself?

In this work, we try to understand why the LTH does not
work for different random initializations from a weight-space
symmetry perspective. Our hypothesis is that to reuse
the LTH winning ticket mask with a different random
initialization, the winning ticket mask obtained needs to
be permuted such that it aligns with the optimization basin
associated with the new random initialization. We illustrate
our hypothesis in Figure 1.

To empirically validate our hypothesis, we obtain a sparse
mask using Iterative Magnitude Pruning (IMP) (Renda et al.,
2020; Han et al., 2015) on modelA (from Figure 1) and show
that given a permutation that aligns the optimization basin
of model A and a new random initialization, the mask can
be reused. The sparse model (with the permuted mask) can
be trained to closer match the generalization performance

1
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Weight Symmetry: Foundations

𝑓(𝒙)

Robert Hecht-Nielsen. On The Algebraic Structure of Feed-forward Network Weight Spaces.
Advanced Neural Computers. 1990.

● NN layers are permutation invariant: the 
ordering of neurons is arbitrary

● Different permutations result in the same 
function, but different parameterizations

○ i.e. model is a different point in weight space

● NN are an example of what is generally 
known as a symmetric function



Weight Symmetry: Foundations

● Different permutations result in same 
function, but different weight 
parameterizations

● For a NN with 𝐿 layers, and layer width 
𝑤, the number of permutations is:

𝒘! 𝑳

● NN permutations often number more 
than atoms in universe (10"#)

≡"
!

𝒘! ⋅ 𝒙 ≡

𝒘" 𝒘# 𝒘# 𝒘"

𝑓(𝒙; 𝛉!,#)𝑓(𝒙; 𝛉#,!)

𝜽",# = 𝒘"
% , 𝒘#%

%
𝜽#," = 𝒘#% , 𝒘"

% %

Robert Hecht-Nielsen. On The Algebraic Structure of Feed-forward Network Weight Spaces. 
Advanced Neural Computers. 1990.



Weight Symmetry: Implications

● No unique minima (or solutions) in 
weight space

● Why 1st-order optimization can find 
good solutions with random init2

● May exist only one “basin” modulo 
permutations1,2, e.g. why random init. 
find similar solutions…

≡

𝒘" 𝒘# 𝒘# 𝒘"

𝑓(𝒙; 𝛉!,#)𝑓(𝒙; 𝛉#,!)

1Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation invariance in 
linear mode connectivity of neural networks. ICLR 2022.
2Samuel K. Ainsworth, Jonathan Hayase, Siddhartha Srinivasa. Git Re-Basin: Merging Models modulo 
Permutation Symmetries. ICLR 2023.



Permutation Alignment/Mapping

● Finding exact  𝜋 for deep NN is NP Hard

● Greedy approximation w/ weight matching1

○ Linear Assignment Problem (LAP) per layer

○ Maximizes correlation of weights/activations

○ Best results empirically for very wide NNs

● Activation matching more robust in general2

≡

𝒘" 𝒘# 𝒘# 𝒘"

𝑓(𝒙; 𝛉!,#)𝑓(𝒙; 𝛉#,!)

1Samuel K. Ainsworth, Jonathan Hayase, Siddhartha Srinivasa. Git Re-Basin: Merging Models modulo 
Permutation Symmetries. ICLR 2023.
2Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur. Repair: Renormalizing 
permuted activations for interpolation repair. ICLR 2023.

𝜋
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Standard NN Training

training

dense initialization

dense solution

ϴt=T

ϴt=0

good

● Train a dense NN from a 
random initialization to find a 
dense solution

● This solution generalizes 
well — in fact similarly even 
for different random init.!

● Recall: weight symmetry 
can explain this

Random initialization
~N(0,	𝜎)

High saliency weight

Low saliency weight

Masked weight



Unstructured Pruning

training

dense solution pruned solution

pruning
ϴt=T

ϴt=0

good good

● Prune low saliency weights
○ Most commonly remove 

smallest magnitude weights

● "One-shot" pruning
○ Train and then prune once

● Iterative pruning
○ Train a bit, prune a bit, repeat 

several times

Random initialization
~N(0,	𝜎)

High saliency weight

Low saliency weight

Masked weight

dense initialization



training

dense solution pruned solution

pruning

mas
k (

on
ly)

sparse initialization

ϴt=T

ϴt=0

good good

● We know we don't need 
~85-95% of weights at 
inference…

● Lots of methods to prune 
after training… but can we 
train pruned NNs from 
random initialization?

Random initialization

Sparse Training?

High saliency weight

Low saliency weight

Masked weight

dense initialization



training

dense solution pruned solution

pruning

mas
k (

on
ly)

sparse initialization

ϴt=T

ϴt=0

good good

● Can we train sparse neural 
networks from random 
initialization?

● Let’s use only the known-
good mask from pruning

● Try to train our sparse model 
from "scratch", i.e. from 
random initialization…

Random initialization

Naive Sparse Training

High saliency weight

Low saliency weight

Masked weight

dense initialization



training

dense solution pruned solution

pruning

mas
k (

on
ly)

sparse solution

training

ϴt=T

ϴt=0

good good poor

● The sparsely trained model 
(sparse solution) doesn't 
generalize as well as the 
original dense solution or 
pruned solution!

Random initialization

Sparse Training 
Problem

High saliency weight

Low saliency weight

Masked weight

sparse initializationdense initialization
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Lottery Ticket Hypothesis

● An unstructured sparse NN, 
when trained from a Lottery 
Ticket "initialization" can 
generalize well

● This initialization was the 
original initialization the 
dense (pruned) model was 
trained from

LT initialization
(original)

dense initialization

dense solution pruned solution

pruning

LT initialization

LT solution

training

ϴt=T

ϴt=0

good good good

mas
k (

on
ly)

training

ϴt=0

Jonathan Frankle and Michael Carbin. The Lottery Ticket Hypothesis: 
Training Pruned Neural Networks. International Conference on 
Learning Representations (ICLR), 2019



1Linear Mode Connectivity and the Lottery Ticket Hypothesis. Frankle et al., 2020

Lottery Ticket Hypothesis 
(revised)
● This initialization was the 

original initialization the 
dense (pruned) model was 
trained from

● LT initialization in general is 
weights from early training1

● This is very expensive to find

Random 
initialization
~N(0,	𝜎)

dense initialization

dense solution pruned solution

pruning

training

ϴt=T

ϴt=0

good good good

LT initialization

(revised)
training

ϴ0<t≪T early snapshot mas
k (

on
ly)

ϴ0<t≪T

LT solution

LTinitialization

http://proceedings.mlr.press/v119/frankle20a.html


● How random is the LT 
initialization?

Lottery Tickets
Random 
initialization
~N(0,	𝜎)

dense initialization

dense solution pruned solution

pruning

LT initialization

LT solution

training

ϴt=T

ϴt=0

good good good

LT initialization

(revised)

mas
k (

on
ly)

ϴ0<t≪T

1Stabilizing the Lottery Ticket Hypothesis, Frankle et al., 2019
2Linear Mode Connectivity and the Lottery Ticket Hypothesis, Frankle et al., 2020

training

ϴ0<t≪T early snapshot

https://arxiv.org/abs/1903.01611
http://proceedings.mlr.press/v119/frankle20a.html


● How “random” is the LTH 
“initialization”? Not very…

● LTH doesn’t work with an 
arbitrary random init!

● In previous work we 
showed LTs are re-learning 
extremely similar solutions 
within the same basin1

Lottery Tickets
Random 
initialization
~N(0,	𝜎)

dense initialization

dense solution pruned solution

pruning

LT initialization

LT solution

training

ϴt=T

ϴt=0

good good good

LT initialization

(revised)

mas
k (

on
ly)

ϴ0<t≪T

?

training

ϴ0<t≪T early snapshot

1Utku Evci, Yani Ioannou, Cem Keskin, Yann Dauphin. Gradient 
Flow in Sparse Neural Networks and How Lottery Tickets Win. 
AAAI 2022



1. LT solution is close to the pruned solution

2. LT/pruned solution is the same basin of convergence

3. LT/pruned solution’s learn very similar functions

LTs appear to re-learn the pruned solution they are derived from

Utku Evci, Yani Ioannou, Cem Keskin, Yann Dauphin. Gradient Flow in Sparse Neural Networks and How 
Lottery Tickets Win. AAAI 2022



Sparse Training:
Aligning Sparse Masks 
with Weight Symmetry

1. Short Biography
2. Motivation
3. Background
4. Aligning Sparse Masks



4. Aligning Sparse Masks

i. Hypothesis
ii. Experimental Methodology
iii. Results
iv. Analysis



Figure 7. A 2D loss landscape visualization of our method in the setting of a model with a 
single layer and two parameters on a single input scale.

● loss landscape with two 
weights 𝐰𝑨 = (𝒘𝟎, 𝒘𝟏)

● Train from 𝐰'𝒕)𝟎 to soln. 𝐰'𝒕)𝑻

● Prune 𝐰'𝒕)𝑻 with 𝐦' = (1, 0)

Pruning Loss Landscape
initialization  

sparse
solution

dense

mask
train



● Project (prune) re-using 𝐦'

● Train from 𝐰'𝒕)𝟎⨀𝐦'

● End training at 𝐰'𝒕)𝑻⨀𝐦'

Figure 7. A 2D loss landscape visualization of our method in the setting of a model with a 
single layer and two parameters on a single input scale.

initialization  

sparse
solution

dense

mask
train

LTH Loss Landscape



● Train w/ new random init. 𝐰+
𝒕)𝟎

● Re-using 𝐦' is illustrated

○ This is clearly the wrong axis to 
project to from new initialization

○ Masked init falls outside basin

● Training from 𝐰+
𝒕)𝟎⨀𝐦' doesn’t 

find good soln.

Figure 7. A 2D loss landscape visualization of our method in the setting of a model with a 
single layer and two parameters on a single input scale.

initialization  

sparse
solution

dense

mask
train

Sparse Loss Landscape



● Hypothesis: Sparse training from 
random init does not work well 
because the mask is misaligned with 
the new basin of w+

,)#

● Can we adapt the mask 𝐦𝑨 derived 
from 𝒘𝑨

𝒕)𝟎 for 𝒘𝑩
𝒕)𝟎?

Figure 7. A 2D loss landscape visualization of our method in the setting of a model with a 
single layer and two parameters on a single input scale.

initialization  

sparse
solution

dense

mask
train

Our Hypothesis



● Recall1: the basins of w',). and w+
,).

are related by a permutation 𝜋:

𝜋 w',). = w+
,).

● Are the masks for different basins 
also related by the same 
permutation?

𝜋 𝐦' = 𝐦+

initialization  

sparse
solution

dense

mask
train

Our Hypothesis

1Samuel K. Ainsworth, Jonathan Hayase, Siddhartha Srinivasa. Git Re-
Basin: Merging Models modulo Permutation Symmetries. ICLR 2023.
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prune

train
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activation matching

mask

train

train
(dense)

train

mask

train

mask

train

mask

match

Naïve baseline LTH SolutionPruned Solution

Sparse Training 
Problem

Dense Training 
& Pruning

Ours

Permuted solution

Lottery Ticket 
Hypothesis
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Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry

w
=
1

w
=
4

w
=
8

w
=
16

(a) sparsity = 0.80 (b) sparsity = 0.90 (c) sparsity = 0.95 (d) sparsity = 0.97

Figure 5. ResNet20→{w}/CIFAR-10.Test accuracy of sparse network solutions vs. increasing rewind points for different sparsity levels
and widths, w. The dashed (- -) line shows the dense model accuracy. The effect of the rewind point on the test accuracy for different
sparsities is shown. As the width increases, the gap between training from a random initialization with the permuted mask and the LTH/dense
baseline (dashed line) decreases, unlike training with the non-permuted mask (naive), showing a model trained with the permuted mask
generalizes better than naive.

between the permuted and the naive baseline is not large,
however for a higher sparsity level (90%), the permuted
solution significantly outperforms the naive solution as
shown in Figure 8b. For the VGG11 model, on increasing
the rewind point, the permuted solution closely matches
the accuracy of LTH, while the naive solution significantly
plateaus and does not improve on increasing the rewind
point. For higher sparsities, the naive baseline was unstable
in training as the modified VGG11 architecture does not
have BatchNorm layers (Ioffe & Szegedy, 2015); we omit
those results in the discussion for a fair comparison. Detailed
results are presented in Table 9 in Appendix A.4.

ResNet50/ImageNet. We also validated our hypothesis
on the ILSVRC 2012 (ImageNet) dataset, which consists of
1.28 million images across 1,000 classes (Deng et al., 2009).
We used the ResNet50 model to evaluate the performance
of the permuted mask at different sparsity levels. As

observed in Figure 7, the permuted solution outperforms
the naive solution across all sparsity levels, showing that our
hypothesis holds true on large-scale datasets as well. While
the permuted solution performs better than the naive solution,
there is still a significant gap between LTH and the permuted
solution in the case of the ImageNet dataset as compared to
the CIFAR-10/100 dataset. This could be due to permutation
matching not being accurate enough, as only a small subset
of the training dataset was used for activation matching. This
can also be visualized in terms of the loss barrier in Figure 3c
between the permuted modelA and modelB; the loss barrier
after permutation is more prominent compared to the CIFAR
dataset (Figures 3a and 3b). Thus, the permutation mapping
ω cannot match the models perfectly in the case of ImageNet
since the permutation matching algorithm uses a greedy
search algorithm to find the permutation mapping. However,
given a better mapping, it may be possible to further improve
the performance of the permuted solution as discussed
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between the permuted and the naive baseline is not large,
however for a higher sparsity level (90%), the permuted
solution significantly outperforms the naive solution as
shown in Figure 8b. For the VGG11 model, on increasing
the rewind point, the permuted solution closely matches
the accuracy of LTH, while the naive solution significantly
plateaus and does not improve on increasing the rewind
point. For higher sparsities, the naive baseline was unstable
in training as the modified VGG11 architecture does not
have BatchNorm layers (Ioffe & Szegedy, 2015); we omit
those results in the discussion for a fair comparison. Detailed
results are presented in Table 9 in Appendix A.4.

ResNet50/ImageNet. We also validated our hypothesis
on the ILSVRC 2012 (ImageNet) dataset, which consists of
1.28 million images across 1,000 classes (Deng et al., 2009).
We used the ResNet50 model to evaluate the performance
of the permuted mask at different sparsity levels. As

observed in Figure 7, the permuted solution outperforms
the naive solution across all sparsity levels, showing that our
hypothesis holds true on large-scale datasets as well. While
the permuted solution performs better than the naive solution,
there is still a significant gap between LTH and the permuted
solution in the case of the ImageNet dataset as compared to
the CIFAR-10/100 dataset. This could be due to permutation
matching not being accurate enough, as only a small subset
of the training dataset was used for activation matching. This
can also be visualized in terms of the loss barrier in Figure 3c
between the permuted modelA and modelB; the loss barrier
after permutation is more prominent compared to the CIFAR
dataset (Figures 3a and 3b). Thus, the permutation mapping
ω cannot match the models perfectly in the case of ImageNet
since the permutation matching algorithm uses a greedy
search algorithm to find the permutation mapping. However,
given a better mapping, it may be possible to further improve
the performance of the permuted solution as discussed
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the CIFAR-10/100 dataset. This could be due to permutation
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dataset (Figures 3a and 3b). Thus, the permutation mapping
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have BatchNorm layers (Ioffe & Szegedy, 2015); we omit
those results in the discussion for a fair comparison. Detailed
results are presented in Table 9 in Appendix A.4.

ResNet50/ImageNet. We also validated our hypothesis
on the ILSVRC 2012 (ImageNet) dataset, which consists of
1.28 million images across 1,000 classes (Deng et al., 2009).
We used the ResNet50 model to evaluate the performance
of the permuted mask at different sparsity levels. As

observed in Figure 7, the permuted solution outperforms
the naive solution across all sparsity levels, showing that our
hypothesis holds true on large-scale datasets as well. While
the permuted solution performs better than the naive solution,
there is still a significant gap between LTH and the permuted
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of the training dataset was used for activation matching. This
can also be visualized in terms of the loss barrier in Figure 3c
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Figure 7. ResNet50→{1}/ImageNet. Top-5 test accuracy vs.
rewinds points of sparse network solutions at various sparsity levels.
We observe the permuted solution consistently performing better
than the naive solution for all sparsities. The dashed (- -) line shows
the dense model accuracy.

explore a restricted solution space. Therefore, in practice, per-
mutation matching does not perfectly align two models. How-
ever, it has been observed that for wider models, the algorithm
can more closely align two models (Ainsworth et al., 2023;
Sharma et al., 2024). To understand how the performance of
the permuted model is affected by the approximation error
of the matching algorithm, we evaluated the LMC and the
accuracy of the permuted solution on ResNet20 models with
varying layer widths. As shown in Figure 3, on increasing the
layer width, the loss barrier of the interpolated network re-
duces, showing that permutation mapping becomes more ac-
curate and aligns two models better. Also, it can be observed
in Figures 5 and 6 that the permuted solution becomes close
to the LTH solution on increasing the model width, showing
that as the permutation matching becomes more accurate, the
gap between the LTH and the permuted solution reduces.

5. Conclusion
In this work, we demonstrate new insights into sparse
training from random initialization and the Lottery Ticket
Hypothesis (LTH) by leveraging weight symmetry in Deep

Table 1. Ensemble Diversity Metrics for CIFAR-10/CIFAR-100.
Although the mean test accuracy of LTH is higher, the ensemble of
permuted models achieves better test accuracy due to better func-
tional diversity of permuted models. Here we compare several
measurements of function space similarity between the models in-
cluding disagreement, which measures prediction differences (Fort
et al., 2020), and Kullback–Leibler (KL)/Jenson-Shannon (JS) diver-
gence, which quantify how much the output distributions of different
models differ (Evci et al., 2022). As shown, the permuted masks
achieve similar diversity as computational expensive IMP solutions,
also resulting in ensembles with a similar increase in generalization.
Mask Test Accuracy

(%)
Ensemble
Acc. (%)

Disagree-
ment

KL JS

ResNet20→{1}/CIFAR-10

none (dense) 92.76±0.106 - - - -
IMP 91.09±0.041 93.25 0.093 0.352 0.130

LTH 91.15±0.163 91.43 0.035 0.038 0.011
permuted 89.38±0.170 91.75 0.107 0.273 0.091
naive 88.68±0.205 91.07 0.113 0.271 0.089

ResNet20→{4}/CIFAR-100

none (dense) 78.37± 0.059 - - - -
IMP 74.46± 0.321 79.27 0.259 1.005 0.372

LTH 75.35± 0.204 75.99 0.117 0.134 0.038
permuted 72.48± 0.356 77.85 0.278 0.918 0.327
naive 71.05± 0.366 76.15 0.290 0.970 0.348

(a) sparsity = 0.80 (b) sparsity = 0.90

Figure 8. VGG11→{1}/CIFAR-10. Test accuracy of sparse
solutions at increasing rewind points for different sparsity levels.
The dashed (- -) line shows the dense model accuracy. In Figure 8b,
the permuted solution closely matches the LTH solution. However,
beyond a certain rewind point, i.e. for k↑ 20 the performance of
the naive solution plateaus. Resulting in a more noticeable gap
between the permuted and naive solutions compared to Figure 8a.

Neural Networks (DNNs). Our empirical findings across
various models and datasets support the hypothesis that mis-
alignment between the mask and loss basin prevents effective
use of LTH masks with new initialization. Although finding
a permutation to align dense models is computationally
expensive, the goal of our work is to develop insights into the
working of LTH and how the sparse mask can be reused, not
to improve the efficiency of LTH. We hope that our work will
spur future work in this direction and will be useful to the
research community working in the realm of sparse training.
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the naive solution plateaus. Resulting in a more noticeable gap
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Neural Networks (DNNs). Our empirical findings across
various models and datasets support the hypothesis that mis-
alignment between the mask and loss basin prevents effective
use of LTH masks with new initialization. Although finding
a permutation to align dense models is computationally
expensive, the goal of our work is to develop insights into the
working of LTH and how the sparse mask can be reused, not
to improve the efficiency of LTH. We hope that our work will
spur future work in this direction and will be useful to the
research community working in the realm of sparse training.
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generalizes better than naive.

between the permuted and the naive baseline is not large,
however for a higher sparsity level (90%), the permuted
solution significantly outperforms the naive solution as
shown in Figure 8b. For the VGG11 model, on increasing
the rewind point, the permuted solution closely matches
the accuracy of LTH, while the naive solution significantly
plateaus and does not improve on increasing the rewind
point. For higher sparsities, the naive baseline was unstable
in training as the modified VGG11 architecture does not
have BatchNorm layers (Ioffe & Szegedy, 2015); we omit
those results in the discussion for a fair comparison. Detailed
results are presented in Table 9 in Appendix A.4.

ResNet50/ImageNet. We also validated our hypothesis
on the ILSVRC 2012 (ImageNet) dataset, which consists of
1.28 million images across 1,000 classes (Deng et al., 2009).
We used the ResNet50 model to evaluate the performance
of the permuted mask at different sparsity levels. As

observed in Figure 7, the permuted solution outperforms
the naive solution across all sparsity levels, showing that our
hypothesis holds true on large-scale datasets as well. While
the permuted solution performs better than the naive solution,
there is still a significant gap between LTH and the permuted
solution in the case of the ImageNet dataset as compared to
the CIFAR-10/100 dataset. This could be due to permutation
matching not being accurate enough, as only a small subset
of the training dataset was used for activation matching. This
can also be visualized in terms of the loss barrier in Figure 3c
between the permuted modelA and modelB; the loss barrier
after permutation is more prominent compared to the CIFAR
dataset (Figures 3a and 3b). Thus, the permutation mapping
ω cannot match the models perfectly in the case of ImageNet
since the permutation matching algorithm uses a greedy
search algorithm to find the permutation mapping. However,
given a better mapping, it may be possible to further improve
the performance of the permuted solution as discussed

6
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(a) sparsity = 0.80 (b) sparsity = 0.90 (c) sparsity = 0.95 (d) sparsity = 0.97

Figure 6. ResNet20→{w}/CIFAR-100. Test accuracy of sparse network solutions vs. increasing rewind points for different sparsity levels
and widths, w. The dashed (- -) line shows the dense model accuracy. The effect of the rewind points on the test accuracy for different
sparsities is shown. As the width increases, the gap between training from a random initialization with the permuted mask and the LTH/dense
baseline (dashed line) decreases, unlike training with the non-permuted mask (naive), showing model trained with the permuted model
generalizes better than naive.

in Section 4.3. Detailed results are presented in Table 10
in Appendix A.4. As demonstrated in Table 10, the permuted
solution outperforms the naive approach by nearly 2% at
higher sparsity levels.

4.2. Diversity Analysis of Permuted Models.

A limitation of LTH is that it consistently converges to very
similar solutions to the original pruned model (Evci et al.,
2022). Evci et al. (2022) speculate this occurs because the
LTH is always trained with the same initialization/rewind
point, and effectively relearns the same solution. Our
hypothesis is that permuted LTH masks, trained with distinct
initialization/rewind points and subject to approximation
errors in permutation matching, may learn more diverse
functions than the LTH itself. We analyze the diversity of
sparse models trained at 90% sparsity, with either a permuted

mask (permuted), the LTH mask (naive), LTH mask & init.
and the original pruned solution (IMP) on which the LTH
is based. We follow the same analysis as Evci et al. (2022)
and compare the diversity of the resulting models, over five
different training runs, using disagreement score, KL diver-
gence and JS divergence. We also compare with an ensemble
of five models trained independently with different random
seeds. As shown in Table 1, an ensemble of permuted models
shows higher diversity across all the metrics than the LTH,
showing that the permuted models learn a more diverse set
of solutions. We provide additional details in Appendix C.

4.3. Effect of Model Width Multiplier.

Permutation matching is an NP-hard problem; the activation
matching algorithm proposed by Ainsworth et al. (2023) does
not find the global optimum; rather, it uses a greedy search to

7
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Functional Diversity
● Our previous work showed that the LTH 

relearns a highly similar solution

● Unlike LTH, we can reuse the LTH mask 
with different random initializations

● We do see improved function diversity 
over LTH, comparable to dense!

● More computationally efficient way to 
improve diversity than iterative 
magnitude pruning alone

Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry

(a) sparsity = 0.80

(b) sparsity = 0.90

(c) sparsity = 0.95

Figure 7. ResNet50→{1}/ImageNet. Top-5 test accuracy vs.
rewinds points of sparse network solutions at various sparsity levels.
We observe the permuted solution consistently performing better
than the naive solution for all sparsities. The dashed (- -) line shows
the dense model accuracy.

explore a restricted solution space. Therefore, in practice, per-
mutation matching does not perfectly align two models. How-
ever, it has been observed that for wider models, the algorithm
can more closely align two models (Ainsworth et al., 2023;
Sharma et al., 2024). To understand how the performance of
the permuted model is affected by the approximation error
of the matching algorithm, we evaluated the LMC and the
accuracy of the permuted solution on ResNet20 models with
varying layer widths. As shown in Figure 3, on increasing the
layer width, the loss barrier of the interpolated network re-
duces, showing that permutation mapping becomes more ac-
curate and aligns two models better. Also, it can be observed
in Figures 5 and 6 that the permuted solution becomes close
to the LTH solution on increasing the model width, showing
that as the permutation matching becomes more accurate, the
gap between the LTH and the permuted solution reduces.

5. Conclusion
In this work, we demonstrate new insights into sparse
training from random initialization and the Lottery Ticket
Hypothesis (LTH) by leveraging weight symmetry in Deep

Table 1. Ensemble Diversity Metrics for CIFAR-10/CIFAR-100.
Although the mean test accuracy of LTH is higher, the ensemble of
permuted models achieves better test accuracy due to better func-
tional diversity of permuted models. Here we compare several
measurements of function space similarity between the models in-
cluding disagreement, which measures prediction differences (Fort
et al., 2020), and Kullback–Leibler (KL)/Jenson-Shannon (JS) diver-
gence, which quantify how much the output distributions of different
models differ (Evci et al., 2022). As shown, the permuted masks
achieve similar diversity as computational expensive IMP solutions,
also resulting in ensembles with a similar increase in generalization.
Mask Test Accuracy

(%)
Ensemble
Acc. (%)

Disagree-
ment

KL JS

ResNet20→{1}/CIFAR-10

none (dense) 92.76±0.106 - - - -
IMP 91.09±0.041 93.25 0.093 0.352 0.130

LTH 91.15±0.163 91.43 0.035 0.038 0.011
permuted 89.38±0.170 91.75 0.107 0.273 0.091
naive 88.68±0.205 91.07 0.113 0.271 0.089

ResNet20→{4}/CIFAR-100

none (dense) 78.37± 0.059 - - - -
IMP 74.46± 0.321 79.27 0.259 1.005 0.372

LTH 75.35± 0.204 75.99 0.117 0.134 0.038
permuted 72.48± 0.356 77.85 0.278 0.918 0.327
naive 71.05± 0.366 76.15 0.290 0.970 0.348

(a) sparsity = 0.80 (b) sparsity = 0.90

Figure 8. VGG11→{1}/CIFAR-10. Test accuracy of sparse
solutions at increasing rewind points for different sparsity levels.
The dashed (- -) line shows the dense model accuracy. In Figure 8b,
the permuted solution closely matches the LTH solution. However,
beyond a certain rewind point, i.e. for k↑ 20 the performance of
the naive solution plateaus. Resulting in a more noticeable gap
between the permuted and naive solutions compared to Figure 8a.

Neural Networks (DNNs). Our empirical findings across
various models and datasets support the hypothesis that mis-
alignment between the mask and loss basin prevents effective
use of LTH masks with new initialization. Although finding
a permutation to align dense models is computationally
expensive, the goal of our work is to develop insights into the
working of LTH and how the sparse mask can be reused, not
to improve the efficiency of LTH. We hope that our work will
spur future work in this direction and will be useful to the
research community working in the realm of sparse training.
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● The Lottery Ticket Hypothesis excited the community on the possibility of sparse 
training and sparse mask re-use, but LTH is limited to re-learning the same soln.

● We explain the sparse training problem: misalignment between a pruned mask 
and the loss basin of a new random initialization prevents effective re-use of 
sparse masks for training

● We show how to re-use a mask to find new solutions: 
● We can approximately permute an existing sparse mask for a new random 

initialization, although this is currently computationally expensive
● We found the functional diversity of sparse training solutions to be comparable to 

dense training when using permuted masks.

Conclusion



● Improving the efficiency and/or efficacy of permutation alignment would make 
the method we propose more practical

● Explaining and/or avoiding weight ”rewinding”, i.e. checkpoints in LTH/sparse 
training

○ Notably Dynamic Sparse Training (DST) methods do not need this, but learn masks

● We see high function diversity with our method of sparse training:

○ Can we efficiently create ensembles using permutations of sparse masks?

○ Could help align weight sparse experts in MoEs for merging

Future Directions
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