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Motivation
o Deep Neural Networks are massive!

o AlexNet1 (2012)
o 61 million parameters
o 724 million FLOPS
o Most compute in conv. layers

1 Krizhevsky, Sutskever, and Hinton, “ImageNet Classification with Deep Convolutional Neural Networks”
2 He, Zhang, Ren, and Sun, “Deep Residual Learning for Image Recognition”
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Motivation
o Deep Neural Networks are massive!

o AlexNet1 (2012)
o 61 million parameters
o 7.24x108 million FLOPS

o ResNet2 200 (2015)
o 62.5 million parameters
o 5.65x1012 FLOPS
o 2-3 weeks of training on 8 GPUs

1 Krizhevsky, Sutskever, and Hinton, “ImageNet Classification with Deep Convolutional Neural Networks”
2 He, Zhang, Ren, and Sun, “Deep Residual Learning for Image Recognition”



Motivation
o Until very recently, state-of-the-

art DNNs for Imagenet were only 
getting more computationally 
complex

o Each generation increased in 
depth and width

o Is it necessary to increase 
complexity to improve 
generalization?
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Over-parameterization of DNNs
o There are many proposed methods for improving the test time efficiency of 

DNNs showing that trained DNNs are over-parameterized

o Compression
o Pruning
o Reduced Representation



Structural Prior
Incorporating our prior knowledge of the problem and 

its representation into the connective structure of a neural network

o Optimization of neural networks needs to learn what weights not to use

o This is usually achieved with regularization

o Can we structure networks closer to the specialized components used for learning images with 
our prior knowledge of the problem/it’s representation?

o Structural Priors ⊂ Network Architecture
◦ architecture is a more general term, i.e., number of layers, activation functions, pooling, etc.



Regularization
o Regularization does help training, but is not a substitute for good structural priors

o MacKay (1991): regularization is not enough to make an over-parameterized network 

generalize as well as a network with a more appropriate parameterization

o We liken regularization to a weak structural prior

o Used where our only prior knowledge is that our network is greatly over-parameterized



Rethinking Regularization
o “Understanding deep learning requires rethinking generalization”, Zhang et al., 2016

o “Deep neural networks easily fit random labels.”

o Identifies types of “regularization”:

o “Explicit regularization” – i.e. weight decay, dropout and data augmentation

o “Implicit regularization” – i.e. early stopping, batch normalization

o “Network architecture”

o Explicit regularization has little effect on fitting random labels, while implicit regularization and 
network architecture does

o Highlights the importance of network architecture, and by extension structural priors, for good 
generalization



Convolutional Neural Networks
Prior Knowledge for Natural Images: 

o Local correlations are very important

o -> Convolutional filters

oWe don’t need to learn a different filter for each pixel

o -> Shared weights



Convolutional Neural Networks
Structural Prior for Natural Images
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Convolutional Neural Networks
Structural Prior for Natural Images
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Ph.D. Thesis Outline
My thesis is based on three novel contributions which have explored 
separate aspects of structural priors in DNN:

I. Spatial Connectivity

II. Inter-Filter Connectivity

III. Conditional Connectivity



Spatial Connectivity



Spatial Connectivity
Prior Knowledge: 

o Many of the filters learned in CNNs appear to be representing 
vertical/horizontal edges/relationships

o Many others appear to be representable by combinations of 
low-rank filters

o Previous work had shown that full-rank filters could be 
replaced with low rank approximations, e.g. Jaderberg (2014)

Does every filter need to be square in a CNN?



Approximated Low-Rank Filters
Jaderberg, Max, Andrea Vedaldi, and Andrew Zisserman (2014)
“Speeding up Convolutional Neural Networks with Low Rank Expansions”.
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CNN with Low-Dimensional Embedding
Typical sub-architecture found in Network-in-Network, ResNet/Inception
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Proposed: Low-Rank Basis
Same total number of filters on each layer as original network, but 50% are 1x3, and 50% are 3x1
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Proposed Structural Prior: Low-Rank + Full Basis
25% of total filters are full 3x3
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Inception
Learning a Filter-Size Basis – learning many small filters (1x1, 3x3), and fewer of the larger (5x5, 7x7)
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ImageNet Results
o gmp: vgg-11 w/ global 
max pooling

o gmp-lr-2x:
o 60% less computation

o gmp-lr-join-wfull:
o 16% less computation
o 1% pt. lower error



Low-Rank Basis
Structural Prior for CNNs
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Abstract

Convolutional networks are at the core of most state-
of-the-art computer vision solutions for a wide variety of
tasks. Since 2014 very deep convolutional networks started
to become mainstream, yielding substantial gains in vari-
ous benchmarks. Although increased model size and com-
putational cost tend to translate to immediate q uality gains
for most tasks (as long as enough labeled data is provided
for training), computational effi ciency and low parameter
count are still enabling factors for various use cases such as
mobile vision and big-data scenarios. Here we are explor-
ing ways to scale up networks in ways that aim at utilizing
the added computation as effi ciently as possible by suitably
factorized convolutions and aggressive regularization. We
benchmark our methods on the ILSVRC 2012 classifi cation
challenge validation set demonstrate substantial gains over
the state of the art: 21.2% top-1 and 5.6% top-5error for
single frame evaluation using a network with a computa-
tional cost of 5billion multiply-adds per inference and with
using less than 25 million parameters. With an ensemble of
4models and multi-crop evaluation, we report 3.5% top-5
error and 17.3% top-1 error.

1. Introduction
Since the 2012 ImageNet competition [16] winning en-

t b K i h k t l [9] th i t k “Al N t” h

larly high performance in the 2014 ILSVRC [16] classifica-
tion challenge. One interesting observation was that gains
in the classification performance tend to transfer to signifi-
cant quality gains in a wide variety of application domains.
This means that architectural improvements in deep con-
volutional architecture can be utilized for improving perfor-
mance for most other computer vision tasks that are increas-
ingly reliant on high quality, learned visual features. Also,
improvements in the network quality resulted in new appli-
cation domains for convolutional networks in cases where
AlexNet features could not compete with hand engineered,
crafted solutions, e.g. proposal generation in detection[4].

Although VGGNet [18] has the compelling feature of
architectural simplicity, this comes at a high cost: evalu-
ating the network requires a lot of computation. On the
other hand, the Inception architecture of GoogLeNet [20]
was also designed to perform well even under strict con-
straints on memory and computational budget. For exam-
ple, GoogleNet employed only 5 million parameters, which
represented a 12× reduction with respect to its predeces-
sor AlexNet, which used 60million parameters. Further-
more, VGGNet employed about 3x more parameters than
AlexNet.

The computational cost of Inception is also much lower
than VGGNet or its higher performing successors [6]. This
has made it feasible to utilize Inception networks in big-data
scenarios[17], [13], where huge amount of data needed to
be processed at reasonable cost or scenarios where memory
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Figure 6. Inception modules after the factorization of the n × n
convolutions. In our proposed architecture, we chose n = 7 for
the 17×17grid. (The f lter sizes are picked using principle 3)
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Figure 7. Inception modules with expanded the f lter bank outputs.
This architecture is used on the coarsest (8× 8) grids to promote
high dimensional representations, as suggested by principle 2 of
Section 2. We are using this solution only on the coarsest grid,
since that is the place where producing high dimensional sparse
representation is the most critical as the ratio of local processing
(by 1× 1 convolutions) is increased compared to the spatial ag-
gregation.
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Inception v.3
Google’s Inception architecture (v.3 and higher) uses our low-rank filters!



Inter-Filter Connectivity



Inter-filter Connectivity
Prior Knowledge: 

o CNNs learn sparse, distributed representations

o Most filters on adjacent layers have low correlation

Does every filter need to be connected to every other filter on a 
previous layer in a CNN?

Ne
tw

or
k-

in
-N

et
w

or
k 

co
nv

1/
co

nv
2 

co
va

ria
nc

econv1 filters

co
nv

2 
fil

te
rs



AlexNet Filter Groups

o AlexNet1 used model parallelization to fit in the GPU memory constraints of the time

o “filter groups” used to split the network into two on all conv layers (except conv3)

1 Krizhevsky, Sutskever, and Hinton, “ImageNet Classification with Deep Convolutional Neural Networks”



AlexNet Filter Groups
Convolutional filters filters in layers with g groups only operate on 1/g of the # input channels
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AlexNet Filter Groups

o Filter groups reduce connectivity between filters, allowing easier model parallelization

o Filter groups drastically reduce the number of parameters, and computation

o … and they don’t seem to affect the generalization of AlexNet?!



CNN with Low-Dimensional Embedding
Typical sub-architecture found in Network-in-Network, ResNet/Inception
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Root-2 Module
Structural Prior for CNNs with Sparse Inter-Filter Relationships
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Root-4 Module
Structural Prior for CNNs with Sparse Inter-Filter Relationships
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Network in Network Filter Groups

o Replace non-spatial convolutional layers with root modules



Filter Group Topologies
o But how many groups to use? Should this change with depth? 

o We explored 3 basic topologies on CIFAR10:

input

output

Tree
Increase # filter groups with depth

Root
Decrease # filter groups with depth

Column
Maintain constant # filters groups

input

output

input

output



CIFAR-10 Results



CIFAR-10 Results



Covariance 

oBlock-diagonal sparsity effected by a root-module is visible in the inter-layer correlation



ILSVRC12 Results – ResNet 50
o root-16

o 27% fewer parameters
o 37% less computation
o CPU 23% faster
o GPU 13% faster 

o (not optimized!)
o 0.2% pt. lower error

o root-64
o 40% fewer parameters
o 45% less computation
o CPU 31% faster
o GPU 12% faster
o 0.1% pt. higher error



ILSVRC12 Results – ResNet 200
o root-64

o 27% fewer parameters
o 48% less computation
o 0.2% pt. lower error
o 0.14% lower error



Root Module
Structural Prior for CNNs with Sparse Inter-Filter Relationships
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ResNet-200 ILSVRC
48% fewer parameters, 27% less computation

identical (or very slightly higher) accuracy



Deep Roots



Xception
Google’s Xception architecture uses a form of root modules (#channels = #filter groups) - “Depthwise Separable Convolution”



ResNeXt
Facebook’s ResNet architecture uses root modules, denoted “Aggregated Residual Transforms”



Conclusion

◦ Structural priors are important for both generalization and efficiency

◦ They are not simply replaced by strong regularization

◦ Simplify the optimization of deep neural networks by constraining the 
search space/dimensionality

◦ There is still a lot we don’t understand about the optimization of deep 
neural networks!



Research Directions

I. Automatically Discovering Structural Priors

II. Learning with “Natural” Datasets

III. Jointly Exploiting Random Exploration and Imitation



Research Directions
I. Automatically Discovering Structural Priors
o Can we find methods of automatically discovering good structural priors from 

data?

o Pruning does not improving generalization

o Greedily growing networks leads to poor generalization

o Results by Han et. al1 show some promise: pruning/growing cycle

o Infer connectivity by analyzing inter-channel correlations in training data?

Han, Song, Jeff Pool, John Tran, and William J. Dally (2015). “Learning both weights and connections for efficient neural networks



Research Directions
II. Learning with “Natural” Datasets

o Both ML and Computer Vision are dataset driven fields

o ImageNet, CIFAR and MNIST are class-balanced

o Current solutions involve either throwing away data or fiddling with loss weighting



Research Directions
III. Exploiting both random exploration and imitation

o RL is appealing - agents learn entirely from experience in an environment

o For many problems this isn’t data efficient enough or feasible:
o e.g. learning to drive a car – randomly exploring in a real environment is dangerous and time 

consuming
o But we can easily collect data from a human driver for real-world driving

o Use supervised learning to bootstrap RL
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