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Research Background

o M.Sc. Computing, Queen’s University

o Prof. Michael Greenspan

o 3D Computer Vision

o Segmentation and recognition in massive
unorganized point clouds of urban
environments

o “Difference of Normals” multi-scale operator
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Research Background

o Ph.D. Engineering, University of Cambridge (2014 - 2018)
o Prof. Roberto Cipolla, Dr. Antonio Criminisi (Microsoft Research)

o Microsoft PhD Scholarship, 9-month internship at Microsoft Research
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Ph.D. — Collaborative Work

o Segmentation of brain tumour tissues with CNNs

D. Zikic, Y. loannou, M. Brown, A. Criminisi (MICCAI-BRATS 2014)
MICCAI-BRATS 2014

o One of the first papers using deep learning for volumetric/medical imagery

o Using CNNs for Malaria Diagnosis b A
Intellectual Ventures/Gates Foundation - h‘
o Designed CNN for the classification of malaria parasites in blood smears 4 .

o Measuring Neural Net Robustness with Constraints

0. Bastani, Y. loannou, L. Lampropoulos, D. Vytiniotis, A. Nori, A. Criminisi
NIPS 2016

o Found that not all adversarial images can be used to improve network robustness

o Refining Architectures of Deep Convolutional Neural Networks
S. Shankar, D. Robertson, Y. loannou, A. Criminisi, R. Cipolla
CVPR 2016
o Proposed a method for adapting neural network architectures to new datasets
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Ph.D. — First Author

oThesis: “Structural Priors in Deep Neural Networks”

o Training CNNs with Low-Rank Filters for Efficient Image Classification

Yani loannou, Duncan Robertson, Jamie Shotton, Roberto Cipolla, Antonio Criminisi
ICLR 2016

o Deep Roots: Improving CNN Efficiency with Hierarchical Filter Groups

Yani loannou, Duncan Robertson, Roberto Cipolla, Antonio Criminisi
CVPR 2017

o Decision Forests, Convolutional Networks and the Models In-Between
Y. loannou, D. Robertson, D. Zikic, P. Kontschieder, J. Shotton, M. Brown, A. Criminisi
Microsoft Research Tech. Report (2015)
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Motivation

o Deep Neural Networks are massive!

o AlexNet! (2012)

o 61 million parameters
o 724 million FLOPS

o Most compute in conv. layers =

o o
o [6)]
convs

convi
conv2
conv3
convd
fc6
fc7
fc8

1Krizhevsky, Sutskever, and Hinton, “ImageNet Classification with Deep Convolutional Neural Networks”
2He, Zhang, Ren, and Sun, “Deep Residual Learning for Image Recognition”
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Motivation

o Deep Neural Networks are massive!

o AlexNet! (2012)
o 61 million parameters
o 724 million FLOPS
o 96% of param in F.C. layers! i

Parameters
o o

-
<)
L

o
o
v

fcé
fc7
fc8

convi
conv2 |
conv3 |
convd |
convs

1Krizhevsky, Sutskever, and Hinton, “ImageNet Classification with Deep Convolutional Neural Networks”
2He, Zhang, Ren, and Sun, “Deep Residual Learning for Image Recognition”
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Motivation

o Deep Neural Networks are massive!

o AlexNet! (2012)
o 61 million parameters
o 7.24x108 million FLOPS

o ResNet? 200 (2015)
o 62.5 million parameters B0
o 5.65x10"2 FLOPS Fio
o 2-3 weeks of training on 8 GPUs —
: Y g3 ¢ 8 & 3

1Krizhevsky, Sutskever, and Hinton, “ImageNet Classification with Deep Convolutional Neural Networks”
2He, Zhang, Ren, and Sun, “Deep Residual Learning for Image Recognition”
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Motivation

P .
o Until very recently, state-of-the- = Extrn Augmentation
art DNNs for Imagenet were only 44, |
getting more computationally
Complex 14% | 5
o
o Each generation increased in Em% |
depth and width 8
10% | .vig 19; 13
o Is it necessary to increase = fég‘gié?%o
complexity to improve 8% |
generalization?
o | | | | cecmail|
108 109 1010 10™ 1012 1013 1014
log4o(Multiply-Accumulate Operations) .7
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Over-parameterization of DNNs

o There are many proposed methods for improving the test time efficiency of
DNNs showing that trained DNNs are over-parameterized

o Compression
o Pruning
o Reduced Representation
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Structural Prior

Incorporating our prior knowledge of the problem and
its representation into the connective structure of a neural network

o Optimization of neural networks needs to learn what weights not to use

o This is usually achieved with regularization

o Can we structure networks closer to the specialized components used for learning images with
our prior knowledge of the problem/it’s representation?

o Structural Priors € Network Architecture
o architecture is a more general term, i.e., number of layers, activation functions, pooling, etc.

l% UNIVERSITY OF

8% CAMBRIDGE



Regularization

o Regularization does help training, but is not a substitute for good structural priors

o MacKay (1991): regularization is not enough to make an over-parameterized network

generalize as well as a network with a more appropriate parameterization

o We liken regularization to a weak structural prior

o Used where our only prior knowledge is that our network is greatly over-parameterized
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Rethinking Regularization

o “Understanding deep learning requires rethinking generalization”, Zhang et al., 2016
o “Deep neural networks easily fit random labels.”

o Identifies types of “regularization”:
o “Explicit regularization” —i.e. weight decay, dropout and data augmentation
o “Implicit regularization” —i.e. early stopping, batch normalization
o “Network architecture”

o Explicit regularization has little effect on fitting random labels, while implicit regularization and
network architecture does

o Highlights the importance of network architecture, and by extension structural priors, for good
generalization
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Convolutional Neural Networks

Prior Knowledge for Natural Images: PR=rrrrEs
ERAENXFN
wEIEEINEA
o -> Convolutional filters ..'.-...
B=NoBFEL
=l B
1ISE

SRER

o Local correlations are very important

oWe don’t need to learn a different filter for each pixel

o ->Shared weights
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c, filters

RelU

input image/ filter
feature map  (parameters)

Convolutional Neural Networks

Structural Prior for Natural Images
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Kernel Connection weights Connection structure
01234567 891011

Input image o Input pixels
(zero-padded 3 x 4 pixels) - O 00 00000600 000
g w
N
( ) Fully connected € =
layer structure 53
o
& 0 0000000000
. I— Output pixels
npu 1Xels
¢ ?Utpm — I Input pixels
eature map
(4x3)

(b) Convolutional
- 3 x 3 square

Convolutional Neural Networks

Structural Prior for Natural Images

% UNIVERSITY OF

8% CAMBRIDGE




Ph.D. Thesis Outline

My thesis is based on three novel contributions which have explored
separate aspects of structural priors in DNN:

|. Spatial Connectivity

Il. Inter-Filter Connectivity

lll. Conditional Connectivity

l% UNIVERSITY OF

¥ CAMBRIDGE

5



Spatial Connectivity
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Spatial Connectivity

Prior Knowledge: ......n.
o an aesramionamageeer e reoresencre . I I I I I I
o Many others appear to be representable by combinations of . . . ! . - . .

low-rank filters ..'.--..
org SI? cI(e)lcjswV;lt?lr Iror\:\? ?asnhkog\;)?oﬁloq)?ljcrr]:gltll'_or?;rs],kef.”gtﬂr:dceo rlli)lgI rlgo ?20 14) = = = = = = = =
NEE RN
s EOFR

Does every filter need to be square in a CNN?
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c, filters c, filters

AR\JN

Approximated Low-Rank Filters

Jaderberg, Max, Andrea Vedaldi, and Andrew Zisserman (2014)

“Speeding up Convolutional Neural Networks with Low Rank Expansions”.
=j% UNIVERSITY OF

8% CAMBRIDGE




c, filters

c,filters

C. RelU

CNN with Low-Dimensional Embedding

Typical sub-architecture found in Network-in-Network, ResNet/Inception

RelU
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c, filters

c,filters

»
i
2/

Proposed: Low-Rank Basis

Same total number of filters on each layer as original network, but 50% are 1x3, and 50% are 3x1

RelU
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c, filters

RelU

c,filters

RelU

Proposed Structural Prior: Low-Rank + Full Basis

25% of total filters are full 3x3
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1% C
% c, filters
& c, filters

P 4

Inception

Learning a Filter-Size Basis — learning many small filters (1x1, 3x3), and fewer of the larger (5x5, 7x7)
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ImageNet Results

o gmp: vgg-11 w/ global R

max p00|lng ] Bas:eline Networks @ Our Results
0/ o vgg-11:
o gmp-lr-2x: 14% o
0 60% less computation 5
= 13% mIrIde """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
o gmp-Ir-join-wfull: @ 8 pf. . oo gmp-sf
! 1 -Ir -1r+
0 16% less computation = 12% foo A R =P -é-J ----------------------------------------------- B el
o 1% pt. lower error a gmb-lr-2x ng
11% B e I e . ___________________ _________________________
: : | : gmp-lr-join-wfull
. . . . . . o] .
10% J; i i ; i | i R
1 2 3 4 5 6 7 8
Multiply-Accumulate Operations .10°
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VGG-11 ILSVRC
21% fewer parameters, 41% less computation
(low-rank only)
or
1% pt higher accuracy, 16% less computation
(low/full-rank mix)




Rethinking the Inception Architecture for Computer Vision

Christian Szegedy Vincent Vanhoucke Sergey loffe Jonathon Shlens
Google Inc. vanhoucke@google.com sioffel@google.com shlens@google.com

szegedyl@google.com

Filter Concat Filter Concat

nx1
i ssifica-
| 3x3 || 1x3 || 3x1 || 1x1 | t gains
1xn I
Convo signifi-
of-the-ari i mains.
tasks. Sin nx1 nx1 p con-
to becom oerfor-
ous benci i i icreas-
putationa 1xn 1xn 1x1 Also,
fo r most Figure 7. Inception modules with expanded the f Iter bank outputs. app]i -
. . 1 1 t This architecture is used on the coarsest (8 X 8) grids to promote] h
Jor traini high dimensional representations, as suggested by principle 2 of] where
count are 1x1 1x1 Pool 1x1 Section 2. We are using this solution only on the coarsest grid,| 1eered,

mobile vi since that is the place where producing high dimensional sparse| )n [4]
. X W representation is the most critical as the ratio of local processing|
ing ways ure of

(by 1 x 1 convolutions) is increased compared to the spatial ag-
the addec

Base gregation. evalu-
factorizec In the
benchma. Figure 6. Inception modules after the factorization of the n X n 2t [20]
challenge convolutions. In our proposed architecture, we chose N = 7 for 't con-

the 17 X 17 grid. (The f Iter sizes are picked using principle 3)

the state
single frame evaluation using a network with a computa-
tional cost of 5 billion multiply-adds per inference and with
using less than 25 million parameters. With an ensemble of

3 N - exam-
ple, GoogleNet employed only 5 million parameters, which
represented a 12x reduction with respect to its predeces-
sor AlexNet, which used 60 million parameters. Further-

4 models and multi-crop evaluation, we report 3.5% top-5 more, VGGNet employed about 3x more parameters than
error and 17.3% top-1 error. AlexNet.

The computational cost of Inception is also much lower

than VGGNet or its higher performing successors [6]. This

Inception v.3

Google’s Inception architecture (v.3 and higher) uses our low-rank filters!
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Inter-Filter Connectivity
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Inter-filter Connectivity

Prior Knowledge:

convl filters

o CNNs learn sparse, distributed representations

o Most filters on adjacent layers have low correlation

conv?2 filters

Does every filter need to be connected to every other filter on a
previous layer in a CNN?

Network-in-Network convl/conv2 covariance
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AlexNet Filter Groups

_,. ........... - -':::;.,. " EERs 3 ‘ " -
ff TS KR, - e o g 3 o=
= | Al _'..'_‘-'. .....
48 [~ '.',' 192 192 178 2048 Zo7g \dense
- v 178 N g — -
2 R | SN
13"--,_':’*,,‘ 13 13
_______ e
Freeeatithy, . .. » i,
N - 4l \ T 1 s dense dense
Ao 1000
192 192 128 Max
204
Max 128 Max pocling T8 nag
pooling pooling

o AlexNet! used model parallelization to fit in the GPU memory constraints of the time

o “filter groups” used to split the network into two on all conv layers (except conv3)

1Krizhevsky, Sutskever, and Hinton, “ImageNet Classification with Deep Convolutional Neural Networks”

l% UNIVERSITY OF

8% CAMBRIDGE




c, filters

............
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AlexNet Filter Groups

Convolutional filters filters in layers with g groups only operate on 1/g of the # input channels
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AlexNet Filter Groups

520% 1
I |4gows
. | ; g g g ; no groups
(>U 190/0 B .............. .............. .............. .............. .............. g. ..... p
2 | egows
|2 180/0 | U 11 .............. [ ............. [] .............. 1 .............. )>
05 06 07 08 0.9 1 1.1 1.2

Model Parameters (# floats) -10°

o Filter groups reduce connectivity between filters, allowing easier model parallelization

o Filter groups drastically reduce the number of parameters, and computation

o ... and they don’t seem to affect the generalization of AlexNet?!
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c, filters

c,filters

C. RelU

CNN with Low-Dimensional Embedding

Typical sub-architecture found in Network-in-Network, ResNet/Inception

RelU
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c, filters
/ /g T RelU
¢,
C
W,
w

Root-2 Module

Structural Prior for CNNs with Sparse Inter-Filter Relationships

¢, filters

RelU
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c, filters

* X
O 0
H ¢
04 Il
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........... H
5 ¢, filters
g © B 3
0 o o
04 *

Root-4 Module

Structural Prior for CNNs with Sparse Inter-Filter Relationships

#§% UNIVERSITY OF
“§% CAMBRIDGE




Network in Network Filter Groups

Sl o o B S

root-4 module root-2 module

o Replace non-spatial convolutional layers with root modules
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Filter Group Topologies

o But how many groups to use? Should this change with depth?

o We explored 3 basic topologies on CIFAR1O0:

input input input

I 1] ]
] 1 ] 1 1 1
output output output
Root Column Tree

Decrease # filter groups with depth  Maintain constant # filters groups Increase # filter groups with depth
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CIFAR-10 Results

y A ; | ~ |e NiN = Root 4 Tree ¢ Column
8.8% fri 0] S e e , : : : :

8.6% |- S S — S N

8.4% |1 4@ — S H— B— S— — .

Error
e
oo »

8.0% | 1B T —— o S N S

5 g 5 Lo 5 s S
8.00/0 _..—...: ............. ' ......... 0 ...: ........... : ............ '. ............ ! ............. : ............. ' ............. ' -
§ o 4 2 § § 5 §

7.8% |- I T S S S -

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 16.0
Model Parameters 10

NiN: mean and standard deviation (error bars) are shown over 5 different random initializations.

l% UNIVERSITY OF

8% CAMBRIDGE



CIFAR-10 Results

y N ; | | e NiN @ Root 4 Tree ¢ Column
8.8% f- 0 e e : : : :

8.6% | S S— I N S -

8.4% |4t S S SO S _
A0 : : : E : :

Error
>
Q0. »

g oo |8 S o e AU SN SO -
o, 2
: : O : : : :

8.00/0— ............ 58 ............ : ... ........... ; ......... 2....?................; ............... é ............... é ......

2 8% L R i T SRR N S 1

10 12 14 16 18 20 22 8
FLOPS (Multiply-Add) 10

NiN: mean and standard deviation (error bars) are shown over 5 different random initializations.
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Covariance

Q conv3a 192 Q conv3a 192 Q conv3a 192

conv2c
conv2c
conv2ac

192
192
192

(a) Standard: g = 1 (b) Root-4: g =2 (c) Root-32: g = 16

oBlock-diagonal sparsity effected by a root-module is visible in the inter-layer correlation
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ILSVRC12 Results — ResNet 50

o 27% fewer parameters Sogu |
o 37% less computation E . : 2
o CPU 23% faster Sogo | Ot 1% TS FS S Sn— - S S
o GPU 13% faster - ?
o (not optimized!) 7% L i i i | i i j i | a .
5 0.2% pt. lower error 15 16 17 18 19 2 21 22 23 24 25 26
Model Parameters (# Floats) .107
O root-64
o 40% fewer parameters g 9% I J— JRN S S N WU S S
o 45% less computation = 3-2 2 .
o CPU 31% faster § g% | Ot T 6 IO S S N S
o GPU 12% faster 5 5
o 0.1% pt. higher error 7% J; i i i i
22 24 26 28 3 32 34 36 38
FLOPS (Multiply-Add) 10°
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ILSVRC12 Results — ResNet 200

6.6% e S S S T2 heNe o = roe ]
o root-64 6.4% ' ' ' '

o 27% fewer parameters
o 48% less computation
o 0.2% pt. lower error _ ‘ . _ . .
o 0.14% lower error 5.8% e A I o I SR

5.6% | | | | i j | —

e
R e M s e

Top-5 Error

6.6% e A A A P P L
6.4% [ ——— —— — . — .
7% N T T
o | m T _ _— _— T
6.0% 104 R
5.8% | e R o o o o 2

5.6% -
42 44 46 48 50 52 54 56

FLOPS (Multiply-Add) 1012

Top-5 Error
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ResNet-200 ILSVRC
48% fewer parameters, 27% less computation
identical (or very slightly higher) accuracy




Deep Roots:
Improving CNN Efficiency with
Hierarchical Filter Groups

y 2016

Ma

Yani Ioannou!, Duncan Robertson?, Roberto Cipolla!, and Antonio Criminisi?

1University of Cambridge, 2Microsoft Research

Abstract. We propose a new method for training computationally effi-
cient and compact convolutional neural networks (CNNs) using a novel
sparse connection structure that resembles a tree root. Our sparse con-
nection structure facilitates a significant reduction in computational cost
and number of parameters of state-of-the-art deep CNNs without com-
promising accuracy. We validate our approach by using it to train more
efficient variants of state-of-the-art CNN architectures, evaluated on the
CIFAR10 and ILSVRC datasets. Our results show similar or higher accu-
racy than the baseline architectures with much less compute, as measured

489v1 [cs.NE] 20

Deep Roots
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v 1 .
Deep Learning with Separable Convolutions
Francois Chollet
Google, Inc.
fchollet@google.com

O

— Monday 3™ October, 2016
&

,;J Abstract

e We present an interpretation of Inception modules in convolutional neural networks

[~ as being an intermediate step in-between regular convolution and the recently intro-

- duced “separable convolution™ operation. In this light, a separable convolution can be

understood as an Inception module with a maximally large number of towers. This
-~ 9!Figure 4. An “extreme” version of our Inception module, with one :O
ir] . . . e

~ spatial convolution per output channel of the 1x1 convolution. )

o o hs

> I1 -

o i Concat g

o 3 e

> n d
[~ L=

Te
o |3x3| |3x3| |3x3|
ol 1 1

—_— Convol [ ] Output ision in
— recent | channels lerable
N attenti 1x1 conv ?t-st:\'le
f models pooling
> operati I MexNet
; archite Input etween
o max-po0NTg Operations, allowIng the Nelwork To Iearn Ticher leatures at every spatial scale.
3 What followed was a trond to make this style of notworl\ increasingly doepc-r mostly driven

Xception

Google’s Xception architecture uses a form of root modules (#channels = #filter groups) - “Depthwise Separable Convolution”
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Aggregated Residual Transformations for Deep Neural Networks

Saining Xie! Ross Girshick® Piotr Dollar? Zhuowen Tu? Kaiming He?
'UC San Diego ?Facebook AT Research
256-din 256-din

We p
tecture j
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formatic
sults in
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new din
set of tr. ck of
the dim |p|cx-
dataset, 256-d out nels).
conditic

i isa | Figure 1. Left: A block of ResNet [13]. Right: A block of
mereast | ResNeXt with cardinality = 32, with roughly the same complex- | 7"

or wide 1sion

dename | ity. A layer is shown as (# in channels, f lter size, # out channels). | Jiciy

ILSVRC yper-
place. | “Moreover, increasing cardinality is more ef- o
than its fective than going deeper or wider when we tasks

increase the capacity.” [37,
1. Intr ened

10poI0gIEs are aple 10 acnieve compeliing accuracy win low
theoretical complexity. The Inception models have evolved

Research on visual recognition is undergoing a transi-
lman Fumans SSELL H i . aalan A9

brrmmn manalamnnmlia A’ ba wnbrrrmals A alaaa

ResNeXt

Facebook’s ResNet architecture uses root modules, denoted “Aggregated Residual Transforms”
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Conclusion

(©)

Structural priors are important for both generalization and efficiency

They are not simply replaced by strong regularization

Simplify the optimization of deep neural networks by constraining the
search space/dimensionality

There is still a lot we don’t understand about the optimization of deep
neural networks!
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Research Directions

|. Automatically Discovering Structural Priors

|”

Il. Learning with “Natural” Datasets

1. Jointly Exploiting Random Exploration and Imitation
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Research Directions

|. Automatically Discovering Structural Priors

o Can we find methods of automatically discovering good structural priors from
data?

o Pruning does not improving generalization
o Greedily growing networks leads to poor generalization
o Results by Han et. al* show some promise: pruning/growing cycle

o Infer connectivity by analyzing inter-channel correlations in training data?

Han, Song, Jeff Pool, John Tran, and William J. Dally (2015). “Learning both weights and connections for efficient neural networks

l% UNIVERSITY OF

8% CAMBRIDGE



Research Directions

|H

Il. Learning with “Natural” Datasets

o Both ML and Computer Vision are dataset driven fields
o ImageNet, CIFAR and MNIST are class-balanced

o Current solutions involve either throwing away data or fiddling with loss weighting

l% UNIVERSITY OF

8% CAMBRIDGE



Research Directions

Ill. Exploiting both random exploration and imitation

o RL is appealing - agents learn entirely from experience in an environment

o For many problems this isn’t data efficient enough or feasible:

o e.g. learning to drive a car — randomly exploring in a real environment is dangerous and time
consuming

o But we can easily collect data from a human driver for real-world driving

o Use supervised learning to bootstrap RL
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Questions

http://yani.io/annou

yai20@cam.ac.uk
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