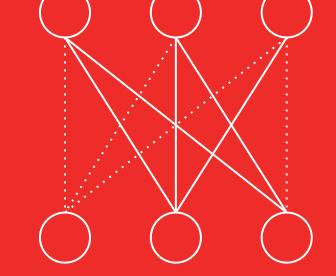
Training Sparse Neural Networks

Yani Ioannou

Schulich Research Chair / Assistant Professor Dept. of Electrical & Software Engineering, Schulich School of Engineering



Computational Neuroscience Day

November 14th, 2024

Training Sparse Neural Networks

Learning Network Structure

Trustworthy Al (Fairness / Security)

www.calgaryml.com

Distribution Shift (Reinforcement Learning)

Training Sparse Neural Networks

Michael Lasby PhD Student

Anna Golubeva MIT / IAFI

Utku Evci

Deep Reinforcement Learning

Muhammad Athar Ganaie
MSc Student

Learning Network Structure

Tejas Pote MSc Student

Rohan Jain MSc Student

Adnan Mohammad PhD Student

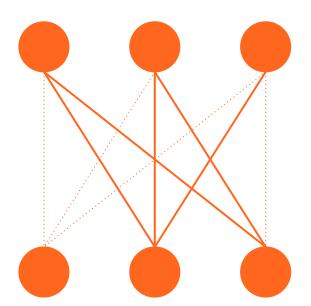
Trustworthy Al

Yufan FengMSc Student

Aida Mohammadshahi MSc Student

Why Sparse Neural Networks?

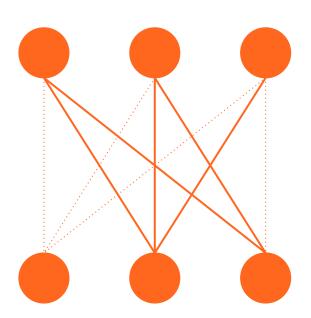
- For fixed number weights, better generalization, FLOPs at inference
- Potential to reduce the cost of training NNs
- Learning the structure of NNs



Learning Structure of NNs

Structure in Neural Networks:

- NNs are fully-connected by default
- I practice we rarely use fully-connected NNs for learning representations...
- Instead, we must use our domain knowledge to change the structure of the model
 - CNNs, Transformers, RNNs, GNNs, ...
- Most of these architectures can be represented as subset of fully-connected NNs



Why Learn NN Structure?

Neural Network Architectures:

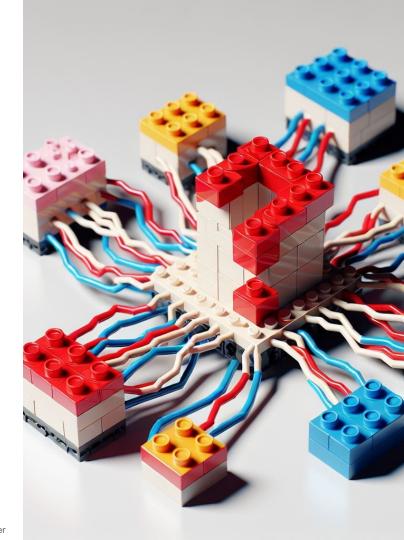
- NN architectures are more often built from pre-designed blocks that we know are good for some problems/domains
- We can learn how to fit together these blocks better with Neural Architecture Search (NAS)
- However, NAS is expensive and can only assemble pre-existing blocks
- What about when we need a new block?



Why not Architecture Search?

Why not Neural Architecture Search:

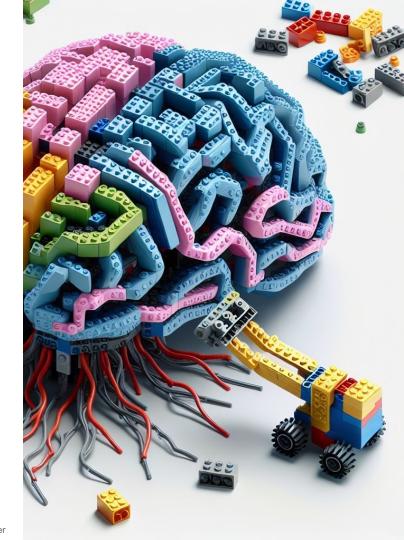
- NAS doesn't help when we need new blocks!
 - i.e. non-NLP, CV, speech, graph, etc.
 - Novel data domain or application
- More important as AI is applied to a broader set of data domains and problems
 - o e.g. Al for Science
- Existing approach is to spend decades of research determining the blocks...



Why Sparse Training?

Why Sparse Training

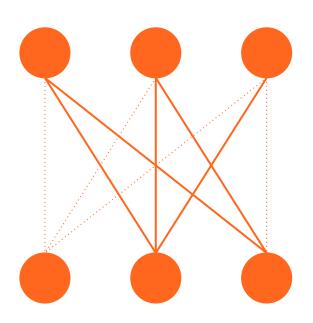
- Sparse NNs learn structure within dense NNs
 - Learn sparse masks, where weights are removed according to training data
 - Not a new idea! As old as NNs themselves.
- But sparse training is more difficult than dense training
 - Many sparse training approaches result in models that don't generalize well
 - Lottery Ticket Hypothesis, etc.



Calgary ML Lab Research

What we have been doing:

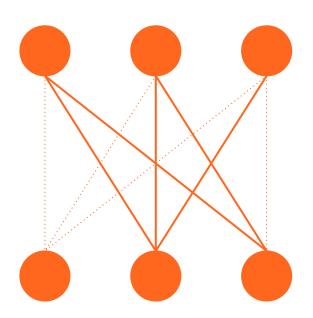
- Understanding why sparse training is difficult
 - Winning Tickets from Random Initialization: Aligning Masks for Sparse Training. Rohan Jain, Mohammed Adnan, Ekansh Sharma, and Yani Ioannou. 2nd Workshop on Unifying Representations in Neural Models (UniReps), NeurIPS 2024 Workshops, Vancouver, BC, Canada.
 - Come visit us at NeurIPS Dec 10-15th, 2024!
 - Gradient Flow in Sparse Neural Networks and How Lottery Tickets Win. Utku Evci, Yani A. Ioannou, Cem Keskin, and Yann Dauphin. In Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI) 2022, Vancouver, BC, Canada.



Calgary ML Lab Research

What we have been doing:

- Making SOTA sparse training methods more practical
 - Dynamic Sparse Training with Structured Sparsity. Mike Lasby, Anna Golubeva, Utku Evci, Mihai Nica, and Yani Ioannou. In International Conference on Learning Representations (ICLR), Vienna, Austria 2024.
 - Navigating Extremes: Dynamic Sparsity in Large Output Spaces. Nasib Ullah, Erik Schultheis, Mike Lasby, Yani Ioannou, and Rohit Babbar. In 38th Annual Conference Neural Information Processing Systems (NeurIPS) 2024, Vancouver, BC, Canada 2024.

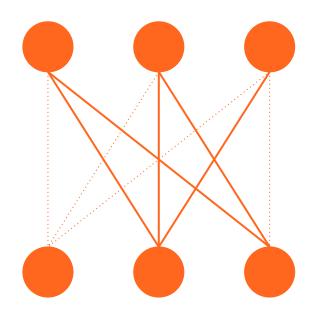


Come visit us at NeurlPS Dec 10-15th, 2024!

Calgary ML Lab Research

What I will talk about today:

- Dynamic Sparse Training with Structured Sparsity. Mike Lasby, Anna Golubeva, Utku Evci, Mihai Nica, and Yani Ioannou. In International Conference on Learning Representations (ICLR), Vienna, Austria 2024.
- But what is Dynamic Sparse Training? ...



Dynamic Sparse Training

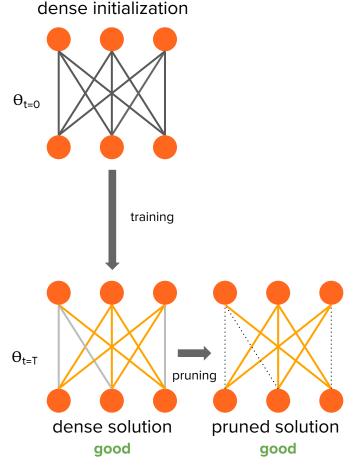
Pruning Dense Models

- Pruning is an effective method to find a sparse mask for a dense models
- Sparse masks of 85 95%
 with similar generalization!
- However, we still need to train a dense model...

High saliency weight

Low saliency weight

····· Masked weight



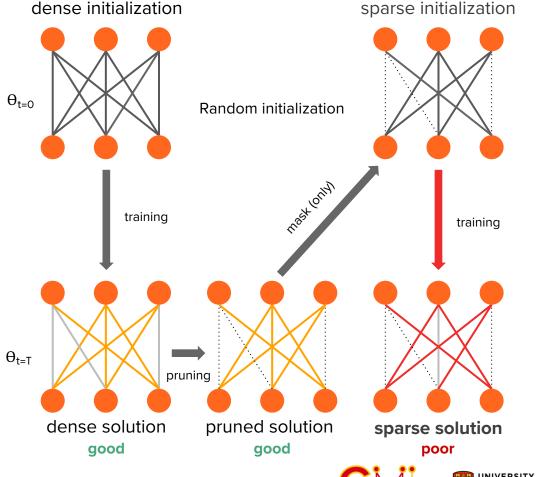
Sparse Training Problem

- Training sparse models from random initialization does not work well, even from a knowngood sparse mask!
- Lottery Ticket Hypothesis looks at this problem, but is not a practical approach for training neural networks

High saliency weight

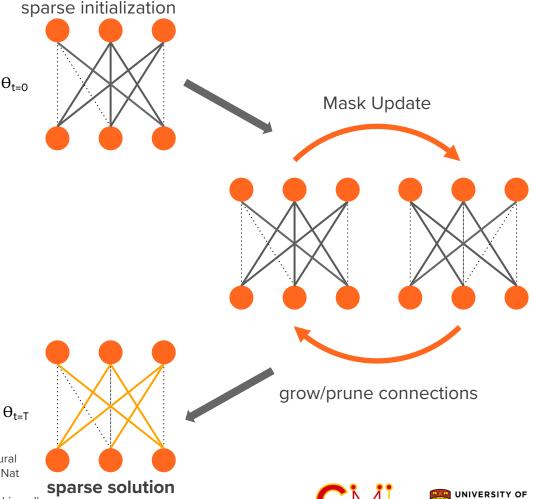
——— Low saliency weight

····· Masked weight



Dynamic Sparse Training $_{\theta_{t=0}}$

- Dynamic Sparse Training (DST),
 e.g. Sparse Evolutional Training¹
 (SET) and Rigging the Lottery
 Ticket² (RigL), are alternatives
- DST trains sparse-to-sparse: i.e. from sparse initialization to sparse solution
- Achieves similar generalization to dense training!
- Mocanu, D.C., Mocanu, E., Stone, P. et al. Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science. Nat Commun 9, 2383 (2018).
- Evci, U., Gale, T., Menick, J., Castro, P. S., Elsen, E. Rigging the lottery: Making all tickets winners, International Conference on Machine Learning (ICML), 2020.



good

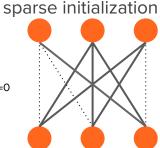
Dynamic Sparse Training

So why aren't we all using DST for deep neural network training or inference?

Uses unstructured sparse weight matrices: hard to accelerate in

practice on GPU/CPU

- Mocanu, D.C., Mocanu, E., Stone, P. et al. Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science. Nat Commun 9, 2383 (2018).
- Evci, U., Gale, T., Menick, J., Castro, P. S., Elsen, E. Rigging the lottery: Making all tickets winners, International Conference on Machine Learning (ICML), 2020.



 $\theta_{t=T}$

unstructured sparse initialization

unstructured sparse solution

Background:
Unstructured v.s.
Structured Sparsity

Sparsity/Pruning Categories

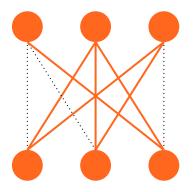
High saliency weight

——— Low saliency weight

····· Masked weight

Unstructured Pruning

(remove weights)



sparse weight matrix

High saliency weight Low saliency weight Masked weight

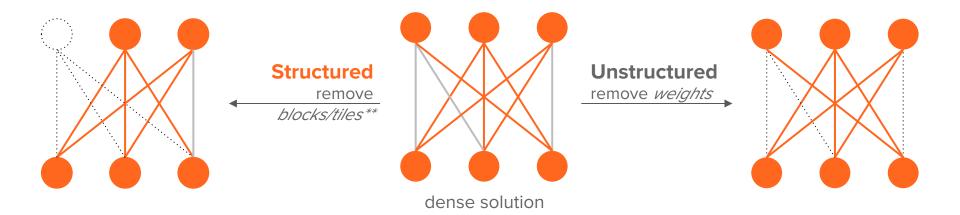
Pro:

- Good generalization at very high sparsity (even 85-95%)
- Fewer theoretical FLOPS

Con:

- Poorly supported by acceleration libraries/hardware
- Theoretical speedups not realized on real-world hardware

Sparsity/Pruning Categories

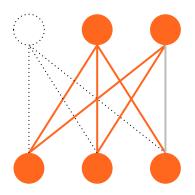


High saliency weightLow saliency weightMasked weight

^{**} Removes tiles or blocks of contiguous weights

Structured Pruning

(removing blocks/tiles)



smaller dense weight matrix

High saliency weightLow saliency weightMasked weight

Pro:

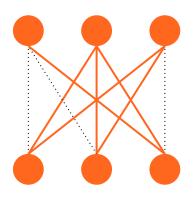
- Better supported by acceleration libraries (BLAS) / hardware (faster in practice!)
- It's effectively a smaller dense model if removing neurons

Con:

Poor generalization at very high sparsity

N:M Structured Pruning

(keep N weights in contiguous blocks of size M)



N:M (2:3) weight matrix

High saliency weight Low saliency weight Masked weight

Pro:

- Better supported by acceleration libraries / hardware than unstructured (e.g. 2:4 on Nvidia Ampere)
- Good generalization, similar to unstructured (depending on N:M)

Con:

Not as fast to accelerate as block sparsity

Can DST Learn structured Sparse Models?

Dynamic Sparse Training with Structured Sparsity.

Mike Lasby, Anna Golubeva, Utku Evci, Mihai Nica, Yani Ioannou International Conference on Learning Representations (ICLR) 2024

Published as a conference paper at ICLR 2024

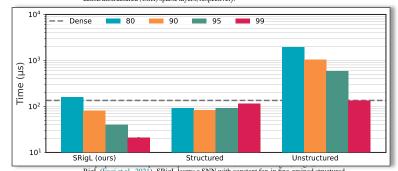
DYNAMIC SPARSE TRAINING WITH STRUCTURED SPARSITY

Mike Lasby¹, Anna Golubeva^{2,3}, Utku Evci⁴, Mihai Nica^{5,6}, Yani A. Ioannou¹

¹University of Calgary, ²Massachusetts Institute of Technology, ³IAIFI

ABSTRACT

Dynamic Sparse Training (DST) methods achieve state-of-the-art results in sparse neural network training, matching the generalization of dense models while enabling sparse training and inference. Although the resulting models are highly sparse and theoretically less computationally expensive, achieving speedups with unstructured sparsity on real-world hardware is challenging. In this work, we propose a sparse-to-sparse DST method, Structured RigL (SRigL), to learn a variant of fine-grained structured N:M sparsity by imposing a constant fan-in constraint. Using our empirical analysis of existing DST methods at high sparsity, we additionally employ a neuron ablation method which enables SRigL to achieve state-of-the-art sparse-to-sparse structured DST performance on a variety of Neural Network (NN) architectures. Using a 90% sparse linear layer, we demonstrate a real-world acceleration of 3.4×2.5× on CPU for online inference and 1.7×113.0× on GPU for inference with a batch size of 256 when compared to equivalent dense/unstructured (CSR) sparse layers, respectively.



Mike Lasby

Anna Golubeva

DeepMine

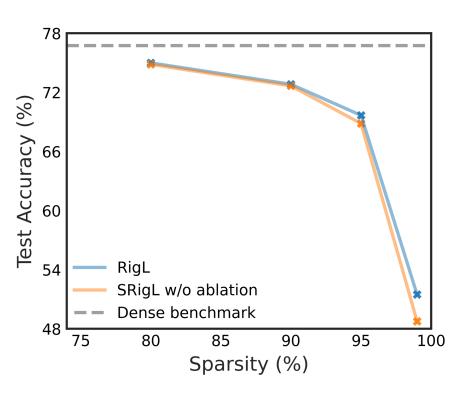
Mihai Nica
VECTOR
INSTITUTE

- Used DST to learn a variant of N:M structured sparsity
- Does not limit generalization performance
- Show GPU acceleration with the learned models (1.7x @90%)

⁴Google DeepMind, 5University of Guelph, 6Vector Institute for AI *

Structured DST: Initial Results

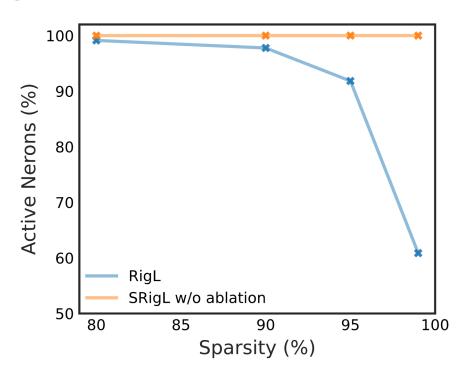
- Enforced structured sparsity in existing state-of-the-art DST method (RigL)
- We saw similar generalization with as unstructured RigL up to 90% sparsity
- At high sparsity (>= 90%) we found constant fan-in did not match RigL results...



ImageNet / ResNet50

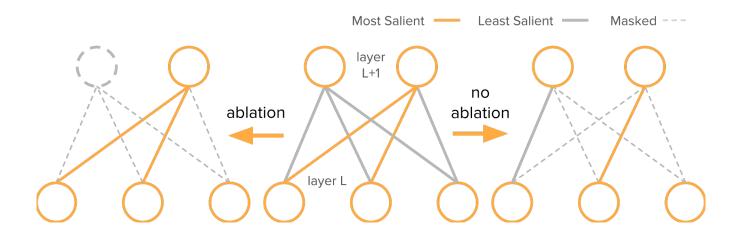
Neuron Ablation in DST Methods

- We investigated what unstructured RigL learned at high sparsity (>90%)
- We found RigL ablates many neurons,
 i.e. it removes whole neurons...



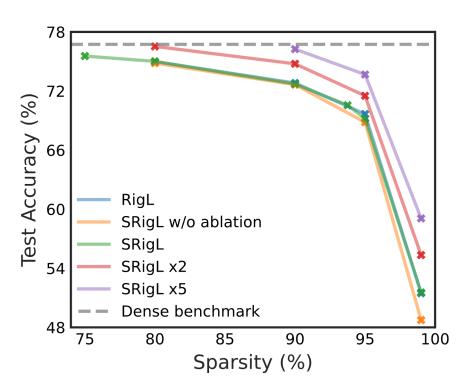
ImageNet / ResNet50

Neuron Ablation



Neuron Ablation in SRigL

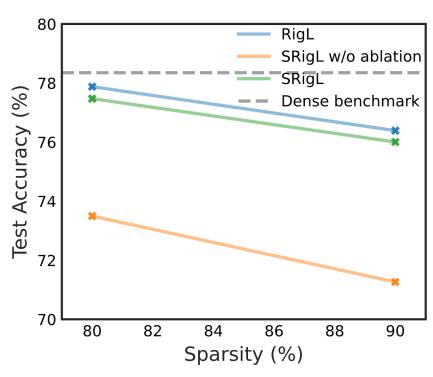
- Effectively RigL at high sparsity learns to reduce the width of layers!
- Our naïve structured sparsity constraint prohibited ablation
- At high sparsity, ablation is required to maintain generalization
- Extended training of structured
 RigL w/ablation matches dense training
 baseline, even at 90% sparsity
 (like unstructured RigL)!



ImageNet / ResNet50

Neuron Ablation in DST Methods

- Our findings also applied to Transformer MLP layers in Vision Transformers (ViT)
- In fact, neuron ablation is even more effective with ViT compared to convolutional models!



ImageNet / ResNet50

Benchmarks

- Vision Transformer MLP layers
- CPU (top): 3.4x faster than dense inference at 90% sparsity
- GPU (bottom): 1.7x faster than dense at 90% sparsity

Table 4: Top-1 test accuracy of ViT-B/16 trained on ImageNet with or w/o neuron ablation

	RigL		SRigL	
sparsity (%) [†]		w/o	w/ ablation	
80	77.9	73.5	77.5	
90	76.4	71.3	76.0	
0	dense	e ViT-B/	76: 78.35	

†Sparsity level set for all modules *except* multi-headed attention input projections, which remain dense. See Appendix D.3 for more details.

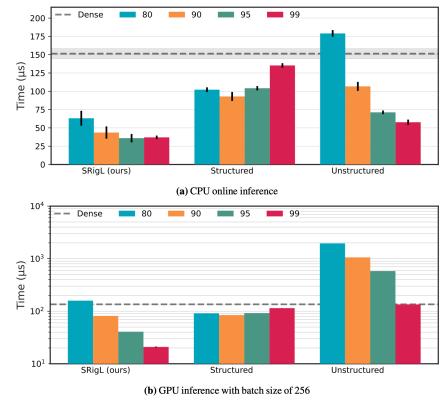


Figure 4: Comparing real-world timings for a fully-connected layer extracted from a ViT-B/16 model trained with SRigL when compressed using the condensed representation learned by SRigL to structured (i.e. the same layer accelerated using only the ablated neurons without exploiting the fine-grained sparsity), and unstructured (i.e. Compressed Sparse Row (CSR)) representations. The median over a minimum of 5 runs is shown, while the error bars show the std. dev. Note: the increased timings for the 95 & 99% sparse structured representations is due to SRigL ablating relatively fewer neurons at these sparsities compared to 80 and 90%. (a) CPU wall-clock timings for online inference on an Intel Xeon W-2145. For online (single input) inference, our condensed representation at 90% is 3.4× faster than dense and 2.5 × faster than unstructured sparsity. See Appendix I. (b) GPU wall-clock timings for inference with a batch size of 256 on an NVIDIA Titan V. At 90% sparsity, our condensed representation is 1.7× faster than dense and 13.0× faster than unstructured (CSR) sparse layers. Note v-axis is log-scaled.

Conclusion

- Dynamic Sparse Training methods learn NN structure during training, and learn representations as well as dense training for vision CNNs/Transformers
- We show that DST methods can also learn hardware-aware sparsity patterns, to be easier to accelerate on real-world hardware (GPUs/CPUs)
 - Can improve real-world inference costs of CNNs/Transformers
 - Much of the progress in deep learning is by finding AI methods/models that can take better advantage of our current hardware – e.g. Transformers, AlexNet
- We show that DST methods already learn how to remove whole neurons during training, i.e. they learn to reduce the width of the model when it's advantageous!

Future Directions

- Dynamic Sparse Training methods are slow to converge, taking up to 5x more iterations to train than dense methods
 - Some of our current work shows promise in improving this
 - Does not affect inference costs!
- DST methods have shown promise in learning better architectures for novel data domains
 - Currently co-supervising a student using DST to improve electricity price forecasting
 - Hoping to work with more domain experts/application domains to know if we can learn better structures for other domains!

Questions?

Yani loannou yani.ioannou@ucalgary.ca

amazon science

