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About Me

» Ph.D. student in the Department of Engineering at the
University of Cambridge.

» Funded by a Microsoft Research PhD Scholarship

» Supervised by Professor Roberto Cipolla, head of the
Computer Vision and Robotics group in the Machine
Intelligence Lab, and Dr. Antonio Criminisi, a principal
researcher at Microsoft Research.
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First Author Publications during PhD

» Decision Forests, Convolutional Networks and the Models

in-Between.
Y. loannou, D. Robertson, D. Zikic, P. Kontschieder, J. Shotton, M.
Brown, A. Criminisi.

MSR Technical Report 2015

» *Training CNNs with Low-Rank Filters for Efficient Image

Classification.
Y. loannou, D. Robertson, J. Shotton, R. Cipolla, A. Criminisi.

ICLR 2016
» *Deep roots: Improving CNN efficiency with hierarchical

filter groups.
Y. loannou, D. Robertson, R. Cipolla, A. Criminisi.

CVPR 2017

*To be presented in this talk
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Collaborative Research

» Medical Computer Vision
» Segmentation of brain tumor tissues with convolutional
neural networks.
D. Zikic, Y. loannou, M. Brown, A. Criminisi. MICCAI-BRATS 2014
» Using CNNs for Malaria Diagnosis.
Intellectual Ventures/Gates Foundation
» Adversarial Examples
Measuring Neural Net Robustness with Constraints.
O. Bastani, Y. loannou, L. Lampropoulos, D. Vytiniotis, A. Nori, A.
Criminisi. NIPS 2016

» Neural Network Design

Refining Architectures of Deep Convolutional Neural
Networks.

S. Shankar, D. Robertson, Y. loannou, A. Criminisi, R. Cipolla. CVPR
2016
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ILSVRC

Imagenet Large-Scale Visual Recognition Challenge

IMJ2GE

» Imagenet Large-Scale Visual Recognition Challenge?.
» 1.2 Million Training Images, 1000 classes.
» 50,000 image validiation/test set.

» In 2012 Alex Krizhevsky won challenge with CNN3.

» ‘AlexNet’ was 26.2% better than second best, 15.3%.
» State-of-the-art beats human error (5%).

2Russakovsky et al., “lmageNet Large Scale Visual Recognition Challenge”.

3Krizhevsky, Sutskever, and Hinton, “ImageNet Classification with Deep Convolutional Neural Networks”.
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AlexNet Complexity

193 VE) 207 2048 \dense

3]
11 hs dense’| [dense|
1000
192 128 Max
Max 128 Max pooling 204 2048
pooling pooling 4

» ~ 61 million parameters

» ~ 724 million FLOPS (per-sample)

» Imagenet has 1.28 million training samples (227 x 227 x 3)
» Images of dimensions (227 x 227 x 3) ~ 200 billion pixels

4Krizhevsky, Sutskever, and Hinton, “ImageNet Classification with Deep Convolutional Neural Networks”.
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AlexNet Complexity - FLOPS
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AlexNet Complexity - Parameters
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The Problem

v

Creating a massively over-parameterized network, has
consequences

Training time: Translates into 2-3 weeks of training on 8
GPUs! (ResNet 200)

Forward pass (ResNet 50): 12 ms GPU, 621 ms CPU
Forward pass (GoogLeNet): 4.4 ms GPU, 300 ms CPU

v

v

v

But what about the practicalities of using deep learning:
» on embedded devices
» realtime applications
» backed by distributed/cloud computing
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Compression/Representation

Isn’t that already being addressed?
» Approximation (compression/pruning) of neural networks
» Reduced representation (8-bit floats/binary!)

Allow us to have a trade off in compute v.s. accuracy.

These methods will still apply to any network. Instead, let’s try
to address the fundamental problem of over-parameterization.



Generalization and Num.
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Generalization and Num. Parameters

» When fitting a curve, we often have little idea of what order
polynomial would best fit the data!
» Weak Prior - Regularization.

» Prior is knowing only that our model is over-parameterized

» This restricts the model to effectively use only a small
number of the parameters

» Strong Priors - Structural.

» With more prior information on the task, e.g. from the
convexity of the polynomial, we may imply that a certain
order polynomial is more appropriate, and restrict learning
to some particular orders.
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Alternative Philosophy

» Deep networks need many more
parameters than data points
because they aren’t just learning to
model data, but also learning what
notto learn.

» |dea: Why don’t we help the
network, through structural priors,
not to learn things it doesn’t need
to?

The Atlas Slave
(Accademia, Florence)
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Typical Convolutional Layer

¢, filters
*
H c C, RelU f
1
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image/feature map filter output featuremap
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Sparsity of Convolution

Kernel Connection weights Connection structure
01234567891011

Input image 2 Q00 000000 OQGKOGOS
(zero-padded 3 x 4 pixels) N
(a) Fully connected -
ol12]3 layer structure 3
4|s5]6 3
8 9 1011 3 0 0000O0OCOGEOSNOSPS
Output
feature map

(4x3)
e (b Convolutional
3 x 3square
[ [s[s]7 4
(891011

» Convolutional Neural Networks (CNNs) are structural
priors for natural images
» Local connectivity - local correlations are important in
natural images, e.g. edges
» Shared parameters - we know we don’t need to re-learn
filters for every pixel
22
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Why are CNNs uniformly structured?

“The marvelous powers of the brain emerge not from
any single, uniformly structured connectionist network
but from highly evolved arrangements of smaller,
specialized networks which are interconnected in very
specific ways.”

Marvin Minsky
Perceptrons (1988 edition)

» Deep networks are largely monolithic (uniformly
connected), with few exceptions

» Why don’t we try to structure our networks closer to the
specialized components required for learning images?

23
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Inception: Learning a Basis for Filter Size

» In®, linear combination of different sized filters is learned,
i.e. a basis space for filters:

1
% m filters
% d}ers
S 335% 4
£ *
H H n : H d
w 5@ W 1% w

ROy

» Motivation: expect most image correlations to be highly
localized, i.e. many small filters. However, a few may
require larger, more complex filters

SSzegedy et al., “Going Deeper with Convolutions”.

24



Spatial Structural Priors
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Published as a conference paper at ICLR 2016

TRAINING CNNS WITH LOW-RANK FILTERS FOR
EFFICIENT IMAGE CLASSIFICATION

Yani Ioannou’, Duncan Robertson?, Jamie Shotton?, Roberto Cipolla' & Antonio Criminisi*
University of Cambridge, 2Microsoft Research
{yai20,rc10001}@cam.ac.uk, {a-durobe, jamiesho,antcrim}@microsoft.com

ABSTRACT

We propose a new method for creating computationally efficient convolutional
neural networks (CNNs) by using low-rank representations of convolutional fil-
ters. Rather than approximating filters in previously-trained networks with more
efficient versions, we learn a set of small basis filters from scratch; during train-
ing, the network learns to combine these basis filters into more complex filters that

25
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Proposed Method

Learning a basis for filters.

@ m filters
. d}cers
—q 9 7

k. %
H . H
% H : d
c m %
w W ]]m w

» A learned basis of vertical/horizontal rectangular filters and
square filters!

» Shape of learned filters is a full w x h x c.

» But what can be effectively learned is limited by the
number and complexity of the components.

26



VGG/Imagenet Results

Top-5 Error

Top-5 Error
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Imagenet Results

» VGG-11 (low-rank): 24% smaller, 41% fewer FLOPS

» VGG-11 (low-rank/full-rank mix): 16% fewer FLOPS with
1% lower error on ILSRVC val, but 16% larger.

» GooglLeNet: 41% smaller, 26% fewer FLOPS

Or better results if you tune it on GoogLeNet more. ..

28



Rethinking the Inception Architecture for Computer Vision

Christian Szegedy Vincent Vanhoucke

Google Inc. vanhoucke@google.com

y@google.com

Sergey loffe

felgoogle.com
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Figure 6. Inception modules after the factorization of the n X n
convolutions. In our proposed architecture, we chose n = 7 for
the 17 x 17 grid. (The f lter sizes are picked using principle 3)

single frame
tional cost of 5

evaluation using a network with a computa-
billion multiply-adds per inference and with

using less than 25 million parameters. With an ensemble of
4 models and multi-crop evaluation, we report 3.5% top-5

error and 17

.3% top-1 error.

1. Introduction

Since the 2012 ImageNet competition [16] winning en-

ssifica-
t gains
signifi-
mains.
p con-
perfor-
1creas-
Also,
Figure 7. Inception modules with expdnded the f Iter bank outputs.| appli-
This architecture is used on the coarsest (8 X 8) grids to promote] o
where
high dimensional representations, as »nggeued by principle 2 o

Section 2. We are using this solution only on the coarsest grid| 'eered,

since that s the place where producing high dimensional sparse] y[4].
representation is the most critical as the ratio of local processing| .
(by 1 X 1 convolutions) is increased compared to the spatial ag-| Ur€ Of
gregation. evalu-
On the
2t [20]
:t con-
exam-

ple, GoogleNet employed only 5 million parameters, which
represented a 12x reduction with respect to its predeces-
sor AlexNet, which used 60 million parameters. Further-
more, VGGNet employed about 3x more parameters than
AlexNet.

The computational cost of Inception is also much lower
than VGGNet or its higher performing successors [6]. This
has made it feasible to utilize Inception networks in big-data
scenarios[17], [13], where huge amount of data needed to

29



Filter-wise Structural Priors
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Deep Roots:
Improving CNN Efficiency with Hierarchical Filter Groups

Yani Ioannou’ Duncan Robertson? Roberto Cipolla'
Antonio Criminisi®
!University of Cambridge, *Microsoft Research

Abstract be achieved by weight decay or dropout [5]. Furthermore,
a carefully designed sparse network connection structure
We propose a new method for creating computation- can also have a regularizing effect. Convolutional Neural

allv efficient and compact convolutional neural networks Networks (CNNs) [6. 71 embody this idea. using a sparse

30
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Typical Convolutional Layer
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AlexNet Filter Grouping

,,,,, 3|
192 28 204 2048 \dense
\ 13
,,,,,, i
’ 13 dense’| [dense|
1000
192 128 Max
Max 28 Max pooling 204 2048
pooling pooling

» Uses 2 filter groups in most of the convolutional layers
» Allowed training across two GPUs (model parallelism)

32
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AlexNet Filter Grouping
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Grouped Convolutional Layer

¢ filter x g

image/feature map filter output featuremap

34



B H UNIVERSITY OF
» CAMBRIDGE

Root Modules

¢ filters

g g * : H
H ¢ RelU f 4 RelU -
I hy ¢ / , H 2 (& w 3
Wi

w

hxwxc/2.

w G

Root-4 Module: d filters in g = 4 filter groups, of shape
hxwxc/4.
35



Network-in-Network
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NiN Root Architectures

root-4 module root-2 module

37
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NiN Root Architectures

Network-in-Network. Filter groups in each convolutional layer.

Model convi conv2 conv3

a b c a b c a b c

5x5 1x1 1x1 5x5 1x1 1x1 3x3 1x1 1x1
Orig. 1 1 1 1 1 1 1 1 1
root-2 1 1 1 2 1 1 1 1 1
root-4 1 1 1 4 1 1 2 1 1
root-8 1 1 1 8 1 1 4 1 1
root-16 1 1 1 16 1 1 8 1 1

38
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CIFAR10: Model Parameters v.s. Error
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NiN: mean and standard deviation (error bars) are shown over 5 different random initializations.
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CIFAR10

Error
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: FLOPS (Multiply-Add) v.s. Error.
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_2
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NiN: mean and standard deviation (error bars) are shown over 5 different random initializations.
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Inter-layer Filter Covariance

Q conv3a 192 Q conv3a 192 Q conv3a 192

(a) Standard: g = 1 (b) Root-4: g =2 (c) Root-32: g = 16

Figure: The block-diagonal sparsity learned by a root-module is
visible in the correlation of filters on layers conv3a and conv2c in
the NiN network.
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Top-5 Error

Top-5 Error
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Top-5 Error

Top-5 Error
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Imagenet Results

Networks with root modules have similar or higher accuracy
than the baseline architectures with much less computation.

» ResNet 508: 40% smaller, 45% fewer FLOPS
» ResNet 2007: 44% smaller, 25% fewer FLOPS
» GoogleNet: 7% smaller, 44% fewer FLOPS

But when you also increase the number of filters. ..

Caffe Re-implementation

"Based on Facebook Torch Model
44



Aggregated Residual Transformations for Deep Neural Networks

Piotr Dolldr? Zhuowen Tu'
2Facebook Al Research
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onlyafi
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dataset, 256-d out nels).

conditic

i isa | Figure 1. Left: A block of ResNet [13]. Right: A block of
mereast | ResNeXt with cardinality = 32, with roughly the same complex-

or wide
dename | ity. A layer is shown as (# in channels, f lter size, # out channels).
ILSVRC

place. | “Moreover, increasing cardinality is more ef-
than s fective than going deeper or wider when we

increase the capacity.” 37,
1. Intr gned

topologies are able to achieve compelling accuracy with low
theoretical complexity. The Inception models have evolved
over time [37, 38], but an important common property is

Research on visual recognition is undergoing a transi-
tion from “feature engineering” to “network engineering”

[24, 23, 43, 33, 35, 37, 13]. In contrast to traditional hand-
designed features (e.g., SIFT [28] and HOG [5]), features
learned by neural networks from large-scale data [32] re-
quire minimal human involvement during training, and can
be transferred to a variety of recognition tasks [7, 10, 27].
Nevertheless. human effort has been shifted to desienine

a split-transform-merge strategy. In an Inception module,
the input is split into a few lower-dimensional embeddings
(by 1x1 convolutions), transformed by a set of specialized
filters (3x3, 5x5, etc.), and merged by concatenation. It
can be shown that the solution space of this architecture is a

45
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Summary

» Using structural priors:

Models are less computationally complex

They also use less parameters

They significantly help generalization in deeper networks
They significantly help generalization with larger datasets

v

v vy

» Are amenable to model parallelization (as with original
AlexNet), for better parallelism across gpus/nodes

47
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Future Work: Research

» We don’t always have enough knowledge of the domain to
propose good structural priors

» Our results (and follow up work) do show however that
current methods of training/regularization seem to have
limited effectiveness in DNNs learning such priors
themselves

» How can we otherwise learn structural priors?

48
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Future Work: Applications

Both of these methods apply to most deep learning
applications:
» Smaller model state — easier storage and synchronization
» Faster training and test of models behind ML cloud
services
» Embedded devices/Tensor processing units
And more specific to each method
» Low-rank filters

» Even larger impact for volumetric imagery (Microsoft
Radiomics)

» Root Modules
» Model parallelization (Azure/Amazon Cloud)

49



