
Structural Priors in Deep Networks

Yani Ioannou

University of Cambridge

August 29, 2017

1



Overview

Introduction

Research Overview
PhD Research
Collaborative Research

Motivation

Structural Priors
Spatial Structural Priors
Filter-wise Structural Priors

Summary/Future Work
Collaborative Research

2



Introduction

3



About Me

I Ph.D. student in the Department of Engineering at the
University of Cambridge.

I Funded by a Microsoft Research PhD Scholarship
I Supervised by Professor Roberto Cipolla, head of the

Computer Vision and Robotics group in the Machine
Intelligence Lab, and Dr. Antonio Criminisi, a principal
researcher at Microsoft Research.

4



Research Overview

5



First Author Publications during PhD

I Decision Forests, Convolutional Networks and the Models
in-Between.
Y. Ioannou, D. Robertson, D. Zikic, P. Kontschieder, J. Shotton, M.
Brown, A. Criminisi.
MSR Technical Report 2015

I ∗Training CNNs with Low-Rank Filters for Efficient Image
Classification.
Y. Ioannou, D. Robertson, J. Shotton, R. Cipolla, A. Criminisi.
ICLR 2016

I ∗Deep roots: Improving CNN efficiency with hierarchical
filter groups.
Y. Ioannou, D. Robertson, R. Cipolla, A. Criminisi.
CVPR 2017

∗To be presented in this talk
6



Collaborative Research

I Medical Computer Vision
I Segmentation of brain tumor tissues with convolutional

neural networks.
D. Zikic, Y. Ioannou, M. Brown, A. Criminisi. MICCAI-BRATS 2014

I Using CNNs for Malaria Diagnosis.
Intellectual Ventures/Gates Foundation

I Adversarial Examples
Measuring Neural Net Robustness with Constraints.
O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, A.
Criminisi. NIPS 2016

I Neural Network Design
Refining Architectures of Deep Convolutional Neural
Networks.
S. Shankar, D. Robertson, Y. Ioannou, A. Criminisi, R. Cipolla. CVPR
2016

7



Motivation

8



ILSVRC
Imagenet Large-Scale Visual Recognition Challenge

I Imagenet Large-Scale Visual Recognition Challenge2.
I 1.2 Million Training Images, 1000 classes.
I 50,000 image validiation/test set.

I In 2012 Alex Krizhevsky won challenge with CNN3.
I ‘AlexNet’ was 26.2% better than second best, 15.3%.

I State-of-the-art beats human error (5%).

2
Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge”.

3
Krizhevsky, Sutskever, and Hinton, “ImageNet Classification with Deep Convolutional Neural Networks”.

9



AlexNet Complexity

4

I ≈ 61 million parameters
I ≈ 724 million FLOPS (per-sample)
I Imagenet has 1.28 million training samples (227× 227× 3)
I Images of dimensions (227× 227× 3) ≈ 200 billion pixels

4
Krizhevsky, Sutskever, and Hinton, “ImageNet Classification with Deep Convolutional Neural Networks”.

10



AlexNet Complexity - FLOPS

co
nv

1

co
nv

2

co
nv

3

co
nv

4

co
nv

5

fc
6

fc
7

fc
8

0.0

0.5

1.0

1.5

2.0

·108

FL
O

P
S

11



AlexNet Complexity - Parameters

co
nv

1

co
nv

2

co
nv

3

co
nv

4

co
nv

5

fc
6

fc
7

fc
8

0.0

1.0

2.0

3.0

·107

P
ar

am
et

er
s

≈
96% in fully connected layers

12



108 109 1010 1011 1012 1013 1014

6%

8%

10%

12%

14%

16%

18% alexnet

vgg-11

googlenet

msra-c

msra-b
msra-a

vgg-19
vgg-16 (D)

vgg-16 (C)

vgg-13

vgg-11

googlenet 10x

googlenet 144x

resnet-50-mirror-earlylr

pre-resnet 200

log10(Multiply-Accumulate Operations)

To
p-

5
E

rr
or

Crop & Mirror Aug.
Extra Augmentation

13



107 108 109

6%

7%

8%

9%

10%

11%

12%

13%

14%

15%

16%

17%

18% alexnet

vgg-11

googlenet

msra-c
msra-b

msra-a

vgg-19vgg-16 (D)

vgg-16 (C)
vgg-13

vgg-11

googlenet 10x

googlenet 144x

resnet-50-mirror-earlylr

pre-resnet 200

log10(Number of Parameters)

To
p-

5
E

rr
or

Crop & Mirror Aug.
Extra Augmentation

14



The Problem

I Creating a massively over-parameterized network, has
consequences

I Training time: Translates into 2-3 weeks of training on 8
GPUs! (ResNet 200)

I Forward pass (ResNet 50): 12 ms GPU, 621 ms CPU
I Forward pass (GoogLeNet): 4.4 ms GPU, 300 ms CPU

But what about the practicalities of using deep learning:
I on embedded devices
I realtime applications
I backed by distributed/cloud computing

15



Compression/Representation

Isn’t that already being addressed?
I Approximation (compression/pruning) of neural networks
I Reduced representation (8-bit floats/binary!)

Allow us to have a trade off in compute v.s. accuracy.

These methods will still apply to any network. Instead, let’s try
to address the fundamental problem of over-parameterization.

16



Generalization and Num. Parameters

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0
samples
function
3rd order fit

(a) 3rd-order poly., 3 points

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0
samples
function
20th order fit

(b) 20th-order poly., 3 points

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0
samples
function
3rd order fit

(c) 3rd-order poly., 10 points

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0
samples
function
20th order fit

(d) 20th-order poly., 10 points

Figure: Polynomial fits of samples from a 3rd order function.
Polynomials of high order, like neural networks of many parameters,
easily overfit a small number of samples as compared to polynomials
of a more suitable order for the sampled function. While
generalization is helped by more data, the higher order polynomial
still tends to overfit.

17



Generalization and Num. Parameters

I When fitting a curve, we often have little idea of what order
polynomial would best fit the data!

I Weak Prior - Regularization.
I Prior is knowing only that our model is over-parameterized
I This restricts the model to effectively use only a small

number of the parameters
I Strong Priors - Structural.

I With more prior information on the task, e.g. from the
convexity of the polynomial, we may imply that a certain
order polynomial is more appropriate, and restrict learning
to some particular orders.

18



Alternative Philosophy

I Deep networks need many more
parameters than data points
because they aren’t just learning to
model data, but also learning what
not to learn.

I Idea: Why don’t we help the
network, through structural priors,
not to learn things it doesn’t need
to?

The Atlas Slave
(Accademia, Florence)

19



Structural Priors

20



Typical Convolutional Layer

c
2
filters

h
1 w

1

c
1

…

c
1

H

W
c

2H2

W2

H

W

ReLU

image/feature map

∗

filterimage/feature map output featuremap

21



Sparsity of Convolution

I Convolutional Neural Networks (CNNs) are structural
priors for natural images

I Local connectivity - local correlations are important in
natural images, e.g. edges

I Shared parameters - we know we don’t need to re-learn
filters for every pixel

22



Why are CNNs uniformly structured?

“The marvelous powers of the brain emerge not from
any single, uniformly structured connectionist network
but from highly evolved arrangements of smaller,
specialized networks which are interconnected in very
specific ways.”

Marvin Minsky
Perceptrons (1988 edition)

I Deep networks are largely monolithic (uniformly
connected), with few exceptions

I Why don’t we try to structure our networks closer to the
specialized components required for learning images?

23



Inception: Learning a Basis for Filter Size

I In5, linear combination of different sized filters is learned,
i.e. a basis space for filters:

1
W

H

m filters

H

W
…

m d
H

W

d filters

m1

* *…

c

…
…

…

1

c1

3

c3

5
c5

7
c7

I Motivation: expect most image correlations to be highly
localized, i.e. many small filters. However, a few may
require larger, more complex filters

5
Szegedy et al., “Going Deeper with Convolutions”.

24



Published as a conference paper at ICLR 2016

TRAINING CNNS WITH LOW-RANK FILTERS FOR
EFFICIENT IMAGE CLASSIFICATION

Yani Ioannou1, Duncan Robertson2, Jamie Shotton2, Roberto Cipolla1 & Antonio Criminisi2
1University of Cambridge, 2Microsoft Research
{yai20,rc10001}@cam.ac.uk, {a-durobe,jamiesho,antcrim}@microsoft.com

ABSTRACT

We propose a new method for creating computationally efficient convolutional
neural networks (CNNs) by using low-rank representations of convolutional fil-
ters. Rather than approximating filters in previously-trained networks with more
efficient versions, we learn a set of small basis filters from scratch; during train-
ing, the network learns to combine these basis filters into more complex filters that
are discriminative for image classification. To train such networks, a novel weight
initialization scheme is used. This allows effective initialization of connection
weights in convolutional layers composed of groups of differently-shaped filters.
We validate our approach by applying it to several existing CNN architectures and
training these networks from scratch using the CIFAR, ILSVRC and MIT Places
datasets. Our results show similar or higher accuracy than conventional CNNs
with much less compute. Applying our method to an improved version of VGG-
11 network using global max-pooling, we achieve comparable validation accuracy
using 41% less compute and only 24% of the original VGG-11 model parameters;
another variant of our method gives a 1 percentage point increase in accuracy
over our improved VGG-11 model, giving a top-5 center-crop validation accuracy
of 89.7% while reducing computation by 16% relative to the original VGG-11
model. Applying our method to the GoogLeNet architecture for ILSVRC, we
achieved comparable accuracy with 26% less compute and 41% fewer model pa-
rameters. Applying our method to a near state-of-the-art network for CIFAR, we
achieved comparable accuracy with 46% less compute and 55% fewer parameters.

1 INTRODUCTION

Convolutional neural networks (CNNs) have been used increasingly succesfully to solve challeng-
ing computer vision problems such as image classification (Krizhevsky et al., 2012), object detection
(Ren et al., 2015), and human pose estimation (Tompson et al., 2015). However, recent improve-
ments in recognition accuracy have come at the expense of increased model size and computational
complexity. These costs can be prohibitive for deployment on low-power devices, or for fast analysis
of videos and volumetric medical images.

One promising aspect of CNNs, from a memory and computational efficiency standpoint, is their
use of convolutional filters (a.k.a. kernels). Such filters usually have limited spatial extent and
their learned weights are shared across the image spatial domain to provide translation invari-
ance (Fukushima, 1980; LeCun et al., 1998). Thus, as illustrated in Fig. 1, in comparison with fully
connected network layers (Fig. 1a), convolutional layers have a much sparser connection structure
and use fewer parameters (Fig. 1b). This leads to faster training and test, better generalization, and
higher accuracy.

This paper focuses on reducing the computational complexity of the convolutional layers of CNNs
by further sparsifying their connection structures. Specifically, we show that by representing con-
volutional filters using a basis space comprising groups of filters of different spatial dimensions
(examples shown in Fig. 1c and d), we can significantly reduce the computational complexity of
existing state-of-the-art CNNs without compromising classification accuracy.

Our contributions include a novel method of learning a set of small basis filters that are combined
to represent larger filters efficiently. Rather than approximating previously trained networks, we

1

ar
X

iv
:1

51
1.

06
74

4v
3 

 [
cs

.C
V

] 
 7

 F
eb

 2
01

6

Spatial Structural Priors

25



Proposed Method
Learning a basis for filters.

1

W

H

m filters

H

W

…
m

d

H

W

d filters

m1

* *

…
…

…

c

I A learned basis of vertical/horizontal rectangular filters and
square filters!

I Shape of learned filters is a full w × h × c.
I But what can be effectively learned is limited by the

number and complexity of the components.
26



VGG/Imagenet Results

1 2 3 4 5 6 7 8
·109

10%

11%

12%

13%

14%
vgg-11

gmp
gmp-sf

gmp-lr-join-wfull

gmp-lr-join

gmp-lr-2x

gmp-lr
gmp-lr-lde

Multiply-Accumulate Operations

To
p-

5
E

rr
or

Baseline Networks Our Results

0.2 0.4 0.6 0.8 1 1.2 1.4
·108

10%

11%

12%

13%

14%
vgg-11

gmp
gmp-sf

gmp-lr-join-wfull

gmp-lr-join

gmp-lr-2x

gmp-lr
gmp-lr-lde

Parameters

To
p-

5
E

rr
or

27



Imagenet Results

I VGG-11 (low-rank): 24% smaller, 41% fewer FLOPS
I VGG-11 (low-rank/full-rank mix): 16% fewer FLOPS with

1% lower error on ILSRVC val, but 16% larger.
I GoogLeNet: 41% smaller, 26% fewer FLOPS

Or better results if you tune it on GoogLeNet more. . .

28



Rethinking the Inception Architecture for Computer Vision

Christian Szegedy
Google Inc.

szegedy@google.com

Vincent Vanhoucke
vanhoucke@google.com

Sergey Ioffe
sioffe@google.com

Jonathon Shlens
shlens@google.com

Zbigniew Wojna
University College London
zbigniewwojna@gmail.com

Abstract

Convolutional networks are at the core of most state-
of-the-art computer vision solutions for a wide variety of
tasks. Since 2014 very deep convolutional networks started
to become mainstream, yielding substantial gains in vari-
ous benchmarks. Although increased model size and com-
putational cost tend to translate to immediate quality gains
for most tasks (as long as enough labeled data is provided
for training), computational efficiency and low parameter
count are still enabling factors for various use cases such as
mobile vision and big-data scenarios. Here we are explor-
ing ways to scale up networks in ways that aim at utilizing
the added computation as efficiently as possible by suitably
factorized convolutions and aggressive regularization. We
benchmark our methods on the ILSVRC 2012 classification
challenge validation set demonstrate substantial gains over
the state of the art: 21.2% top-1 and 5.6% top-5 error for
single frame evaluation using a network with a computa-
tional cost of 5 billion multiply-adds per inference and with
using less than 25 million parameters. With an ensemble of
4 models and multi-crop evaluation, we report 3.5% top-5
error and 17.3% top-1 error.

1. Introduction
Since the 2012 ImageNet competition [16] winning en-

try by Krizhevsky et al [9], their network “AlexNet” has
been successfully applied to a larger variety of computer
vision tasks, for example to object-detection [5], segmen-
tation [12], human pose estimation [22], video classifica-
tion [8], object tracking [23], and superresolution [3].

These successes spurred a new line of research that fo-
cused on finding higher performing convolutional neural
networks. Starting in 2014, the quality of network architec-
tures significantly improved by utilizing deeper and wider
networks. VGGNet [18] and GoogLeNet [20] yielded simi-

larly high performance in the 2014 ILSVRC [16] classifica-
tion challenge. One interesting observation was that gains
in the classification performance tend to transfer to signifi-
cant quality gains in a wide variety of application domains.
This means that architectural improvements in deep con-
volutional architecture can be utilized for improving perfor-
mance for most other computer vision tasks that are increas-
ingly reliant on high quality, learned visual features. Also,
improvements in the network quality resulted in new appli-
cation domains for convolutional networks in cases where
AlexNet features could not compete with hand engineered,
crafted solutions, e.g. proposal generation in detection[4].

Although VGGNet [18] has the compelling feature of
architectural simplicity, this comes at a high cost: evalu-
ating the network requires a lot of computation. On the
other hand, the Inception architecture of GoogLeNet [20]
was also designed to perform well even under strict con-
straints on memory and computational budget. For exam-
ple, GoogleNet employed only 5 million parameters, which
represented a 12× reduction with respect to its predeces-
sor AlexNet, which used 60 million parameters. Further-
more, VGGNet employed about 3x more parameters than
AlexNet.

The computational cost of Inception is also much lower
than VGGNet or its higher performing successors [6]. This
has made it feasible to utilize Inception networks in big-data
scenarios[17], [13], where huge amount of data needed to
be processed at reasonable cost or scenarios where memory
or computational capacity is inherently limited, for example
in mobile vision settings. It is certainly possible to mitigate
parts of these issues by applying specialized solutions to tar-
get memory use [2], [15] or by optimizing the execution of
certain operations via computational tricks [10]. However,
these methods add extra complexity. Furthermore, these
methods could be applied to optimize the Inception archi-
tecture as well, widening the efficiency gap again.

Still, the complexity of the Inception architecture makes

1

ar
X

iv
:1

51
2.

00
56

7v
3 

 [
cs

.C
V

] 
 1

1 
D

ec
 2

01
5

1x1 1x1 

1xn 

Pool 

1x1 

Base

Filter Concat

nx1 

1xn 

nx1 

1xn 

nx1 

1x1 

Figure 6. Inception modules after the factorization of the n × n
convolutions. In our proposed architecture, we chose n = 7 for
the 17×17grid. (The f lter sizes are picked using principle 3)

1x1 1x1 

3x3 

Pool 

1x1 

Base

Filter Concat

1x3 

1x3 

1x1 

3x1 

3x1 

Figure 7. Inception modules with expanded the f lter bank outputs.
This architecture is used on the coarsest (8× 8) grids to promote
high dimensional representations, as suggested by principle 2 of
Section 2. We are using this solution only on the coarsest grid,
since that is the place where producing high dimensional sparse
representation is the most critical as the ratio of local processing
(by 1× 1 convolutions) is increased compared to the spatial ag-
gregation.

29



Deep Roots:
Improving CNN Efficiency with Hierarchical Filter Groups

Yani Ioannou1 Duncan Robertson2 Roberto Cipolla1

Antonio Criminisi2
1University of Cambridge, 2Microsoft Research

Abstract

We propose a new method for creating computation-
ally efficient and compact convolutional neural networks
(CNNs) using a novel sparse connection structure that re-
sembles a tree root. This allows a significant reduction in
computational cost and number of parameters compared
to state-of-the-art deep CNNs, without compromising ac-
curacy, by exploiting the sparsity of inter-layer filter de-
pendencies. We validate our approach by using it to train
more efficient variants of state-of-the-art CNN architec-
tures, evaluated on the CIFAR10 and ILSVRC datasets. Our
results show similar or higher accuracy than the baseline
architectures with much less computation, as measured by
CPU and GPU timings. For example, for ResNet 50, our
model has 40% fewer parameters, 45% fewer floating point
operations, and is 31% (12%) faster on a CPU (GPU).
For the deeper ResNet 200 our model has 25% fewer float-
ing point operations and 44% fewer parameters, while
maintaining state-of-the-art accuracy. For GoogLeNet, our
model has 7% fewer parameters and is 21% (16%) faster
on a CPU (GPU).

1. Introduction

This paper describes a new method for creating compu-
tationally efficient and compact convolutional neural net-
works (CNNs) using a novel sparse connection structure
that resembles a tree root. This allows a significant reduc-
tion in computational cost and number of parameters com-
pared to state-of-the-art deep CNNs without compromising
accuracy.

It has been shown that a large proportion of the learned
weights in deep networks are redundant [1], a property that
has been widely exploited to make neural networks smaller
and more computationally efficient [2, 3]). It is unsurprising
then that regularization is a critical part of training such net-
works using large datasets [4]. Without regularization deep
networks are susceptible to over-fitting. Regularization may

be achieved by weight decay or dropout [5]. Furthermore,
a carefully designed sparse network connection structure
can also have a regularizing effect. Convolutional Neural
Networks (CNNs) [6, 7] embody this idea, using a sparse
convolutional connection structure to exploit the locality of
natural image structure. In consequence, they are easier to
train.

With few exceptions, state-of-the-art CNNs for image
recognition are largely monolithic, with each filter operat-
ing on the feature maps of all filters on a previous layer. In-
terestingly, this is in stark contrast to what we understand of
biological neural networks, where we see “highly evolved
arrangements of smaller, specialized networks which are in-
terconnected in very specific ways” [8].

Recently, learning a low-rank basis for filters was found
to improve generalization while reducing the computational
complexity and model size of a CNN with only full rank fil-
ters [9]. However, this work addressed only the spatial ex-
tents of the convolutional filters (i.e. h and w in Fig. 1a).
In this work we will show that a similar idea can be ap-
plied to the channel extents – i.e. filter inter-connectivity –
by using filter groups [4]. We show that simple alterations
to state-of-the-art CNN architectures can drastically reduce
computational cost and model size without compromising
accuracy.

2. Related Work

Most previous work on reducing the computational com-
plexity of CNNs has focused on approximating convolu-
tional filters in the spatial (as opposed to the channel) do-
main, either by using low-rank approximations [9–13], or
Fourier transform based convolution [14, 15]. More general
methods have used reduced precision number representa-
tions [16] or compression of previously trained models [17,
18]. Here we explore methods that reduce the computational
impact of the large number of filter channels within state-of-
the art networks. Specifically, we consider decreasing the
number of incoming connections to nodes.

1

ar
X

iv
:1

60
5.

06
48

9v
3 

 [
cs

.N
E

] 
 3

0 
N

ov
 2

01
6

Filter-wise Structural Priors

30



Typical Convolutional Layer

c
2
filters

h
1 w

1

c
1

…

c
1

H

W
c

2H2

W2

H

W

ReLU

image/feature map

∗

filterimage/feature map output featuremap

31



AlexNet Filter Grouping

I Uses 2 filter groups in most of the convolutional layers
I Allowed training across two GPUs (model parallelism)

32



AlexNet Filter Grouping

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
·109

18%

19%

20%

2 groups

no groups
4 groups

Model Parameters (# floats)

To
p-

5
Va

l.
E

rr
or

33



Grouped Convolutional Layer

c
2
filters

h
1 w

1

c
1

H

W
c

2H2

W2

H

W

× ൗc2 g

ൗc1 g

ൗc2 g ×
ReLU

image/feature map

∗

filterimage/feature map output featuremap

34



Root Modules

c
2
filters

…

1

h
1 w

1

c
1

H

W
c

2
c

3

H

WH2

W2

H

W

× ൗc2 g

ൗc1 g
ReLU

c
2

ൗc2 g ×

c
3
filters

1

ReLU

Root-2 Module: d filters in g = 2 filter groups, of shape
h × w × c/2.

c
2
filters

…

c
3
filters

1

1
h

1 w
1

c
1

H

W
c

2
c

3

H

WH2

W2

H

W

× ൗc2 g

ൗc2 g ×
ReLU

c
2

× ൗc2 g

ൗc1 g

ൗc2 g ×

ReLU

Root-4 Module: d filters in g = 4 filter groups, of shape
h × w × c/4.

35



Network-in-Network

ReLU

…

H

W
3

…

ReLU

1
1

…

ReLU

1
1

· · ·

input conv1a conv1b conv1c

· · · …

ReLU

…

ReLU

1
1

…
ReLU

1
1

· · ·

conv2a conv2b conv2c

· · · …

ReLU

…

ReLU

1
1

…

ReLU

1
1

ReLU

conv3a conv3b conv3c pool output

36



NiN Root Architectures

· · · …

ReLU

1
1

…

ReLU

…

ReLU

1
1

…

ReLU

1
1

…

ReLU

…

ReLU

1
1

· · ·

· · · …

ReLU

1
1

ReLU

…

ReLU

1
1

…

ReLU

1
1

ReLU

…

ReLU

1
1

· · ·

root-4 module root-2 module

37



NiN Root Architectures

Network-in-Network. Filter groups in each convolutional layer.

Model conv1 conv2 conv3
a b c a b c a b c
5×5 1×1 1×1 5×5 1×1 1×1 3×3 1×1 1×1

Orig. 1 1 1 1 1 1 1 1 1

root-2 1 1 1 2 1 1 1 1 1
root-4 1 1 1 4 1 1 2 1 1
root-8 1 1 1 8 1 1 4 1 1
root-16 1 1 1 16 1 1 8 1 1

38



CIFAR10: Model Parameters v.s. Error

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
·106

7.8%

8.0%

8.2%

8.4%

8.6%

8.8%

·10−2

2
4

8

16

2

4

816

24
8

16

Model Parameters

E
rr

or

NiN Root Tree Column

NiN: mean and standard deviation (error bars) are shown over 5 different random initializations.

39



CIFAR10: FLOPS (Multiply-Add) v.s. Error.

1.0 1.2 1.4 1.6 1.8 2.0 2.2
·108

7.8%

8.0%

8.2%

8.4%

8.6%

8.8%

·10−2

2
4

8

16

2

4

816

24
8

16

FLOPS (Multiply-Add)

E
rr

or

NiN Root Tree Column

NiN: mean and standard deviation (error bars) are shown over 5 different random initializations.

40



Inter-layer Filter Covariance

0 192

19
2

conv3a

c
o
n
v
2
c

(a) Standard: g = 1

0 192

19
2

conv3a

c
o
n
v
2
c

(b) Root-4: g = 2

0 192

19
2

conv3a

c
o
n
v
2
c

(c) Root-32: g = 16

Figure: The block-diagonal sparsity learned by a root-module is
visible in the correlation of filters on layers conv3a and conv2c in
the NiN network.

41



1.6 1.8 2 2.2 2.4 2.6
·107

7%

8%

9%
2

4816
3264

Model Parameters (# Floats)

To
p-

5
E

rr
or

ResNet 50 All Filters

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
·109

7%

8%

9%
2

4816
3264

FLOPS (Multiply-Add)

To
p-

5
E

rr
or

42



10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6
7%

8%

9%
2

4816
32 64

GPU Forward (ms)

To
p-

5
E

rr
or

420 440 460 480 500 520 540 560 580 600 620
7%

8%

9%
2

4816
3264

CPU Forward (ms)

To
p-

5
E

rr
or

43



Imagenet Results

Networks with root modules have similar or higher accuracy
than the baseline architectures with much less computation.

I ResNet 506: 40% smaller, 45% fewer FLOPS
I ResNet 2007: 44% smaller, 25% fewer FLOPS
I GoogLeNet: 7% smaller, 44% fewer FLOPS

But when you also increase the number of filters. . .

6Caffe Re-implementation
7Based on Facebook Torch Model

44



Aggregated Residual Transformations for Deep Neural Networks

Saining Xie1 Ross Girshick2 Piotr Dollár2 Zhuowen Tu1 Kaiming He2
1UC San Diego 2Facebook AI Research

{s9xie,ztu}@ucsd.edu {rbg,kaiminghe}@fb.com

Abstract
We present a simple, highly modularized network archi-

tecture for image classification. Our network is constructed
by repeating a building block that aggregates a set of trans-
formations with the same topology. Our simple design re-
sults in a homogeneous, multi-branch architecture that has
only a few hyper-parameters to set. This strategy exposes a
new dimension, which we call “cardinality” (the size of the
set of transformations), as an essential factor in addition to
the dimensions of depth and width. On the ImageNet-1K
dataset, we empirically show that even under the restricted
condition of maintaining complexity, increasing cardinal-
ity is able to improve classification accuracy. Moreover,
increasing cardinality is more effective than going deeper
or wider when we increase the capacity. Our models, co-
denamed ResNeXt, are the foundations of our entry to the
ILSVRC 2016 classification task in which we secured 2nd
place. We further investigate ResNeXt on an ImageNet-5K
set and the COCO detection set, also showing better results
than its ResNet counterpart.

1. Introduction
Research on visual recognition is undergoing a transi-

tion from “feature engineering” to “network engineering”
[24, 23, 43, 33, 35, 37, 13]. In contrast to traditional hand-
designed features (e.g., SIFT [28] and HOG [5]), features
learned by neural networks from large-scale data [32] re-
quire minimal human involvement during training, and can
be transferred to a variety of recognition tasks [7, 10, 27].
Nevertheless, human effort has been shifted to designing
better network architectures for learning representations.

Designing architectures becomes increasingly difficult
with the growing number of hyper-parameters (width1, fil-
ter sizes, strides, etc.), especially when there are many lay-
ers. The VGG-nets [35] exhibit a simple yet effective strat-
egy of constructing very deep networks: stacking build-
ing blocks of the same shape. This strategy is inherited
by ResNets [13] which stack modules of the same topol-

1Width refers to the number of channels in a layer.

256, 1x1, 4

4, 3x3, 4

4, 1x1, 256

+

256, 1x1, 4

4, 3x3, 4

4, 1x1, 256

256, 1x1, 4

4, 3x3, 4

4, 1x1, 256

....
total 32
paths

256-d in

+

256, 1x1, 64

64, 3x3, 64

64, 1x1, 256

+

256-d in

256-d out

256-d out

Figure 1. Left: A block of ResNet [13]. Right: A block of
ResNeXt with cardinality = 32, with roughly the same complex-
ity. A layer is shown as (# in channels, filter size, # out channels).

ogy. This simple rule reduces the free choices of hyper-
parameters, and depth is exposed as an essential dimension
in neural networks. Moreover, we argue that the simplicity
of this rule may reduce the risk of over-adapting the hyper-
parameters to a specific dataset. The robustness of VGG-
nets and ResNets has been proven by various visual recog-
nition tasks [7, 10, 9, 27, 30, 13] and by non-visual tasks
involving speech [41, 29] and language [4, 40, 19].

Unlike VGG-nets, the family of Inception models [37,
16, 38, 36] have demonstrated that carefully designed
topologies are able to achieve compelling accuracy with low
theoretical complexity. The Inception models have evolved
over time [37, 38], but an important common property is
a split-transform-merge strategy. In an Inception module,
the input is split into a few lower-dimensional embeddings
(by 1×1 convolutions), transformed by a set of specialized
filters (3×3, 5×5, etc.), and merged by concatenation. It
can be shown that the solution space of this architecture is a
strict subspace of the solution space of a single large layer
(e.g., 5×5) operating on a high-dimensional embedding.
The split-transform-merge behavior of Inception modules
is expected to approach the representational power of large
and dense layers, but at a considerably lower computational
complexity.

Despite good accuracy, the realization of Inception mod-
els has been accompanied with a series of complicating fac-
tors — the filter numbers and sizes are tailored for each
individual transformation, and the modules are customized

1

ar
X

iv
:1

61
1.

05
43

1v
1 

 [
cs

.C
V

] 
 1

6 
N

ov
 2

01
6 256, 1x1, 4

4, 3x3, 4

4, 1x1, 256

+

256, 1x1, 4

4, 3x3, 4

4, 1x1, 256

256, 1x1, 4

4, 3x3, 4

4, 1x1, 256

....
total 32
paths

256-d in

+

256, 1x1, 64

64, 3x3, 64

64, 1x1, 256

+

256-d in

256-d out

256-d out

Figure 1. Left: A block of ResNet [13]. Right: A block of
ResNeXt with cardinality = 32, with roughly the same complex-
ity. A layer is shown as (# in channels, f lter size, # out channels).

“Moreover, increasing cardinality is more ef-
fective than going deeper or wider when we
increase the capacity.”

45



Summary/Future Work

46



Summary

I Using structural priors:
I Models are less computationally complex
I They also use less parameters
I They significantly help generalization in deeper networks
I They significantly help generalization with larger datasets

I Are amenable to model parallelization (as with original
AlexNet), for better parallelism across gpus/nodes

47



Future Work: Research

I We don’t always have enough knowledge of the domain to
propose good structural priors

I Our results (and follow up work) do show however that
current methods of training/regularization seem to have
limited effectiveness in DNNs learning such priors
themselves

I How can we otherwise learn structural priors?

48



Future Work: Applications

Both of these methods apply to most deep learning
applications:

I Smaller model state – easier storage and synchronization
I Faster training and test of models behind ML cloud

services
I Embedded devices/Tensor processing units

And more specific to each method
I Low-rank filters

I Even larger impact for volumetric imagery (Microsoft
Radiomics)

I Root Modules
I Model parallelization (Azure/Amazon Cloud)

49


